Inositol polyphosphates contribute to cellular circadian rhythms: Implications for understanding lithium's molecular mechanism

Inositol polyphosphates contribute to cellular circadian rhythms: Implications for understanding... Most living organisms maintain cell autonomous circadian clocks that synchronize critical biological functions with daily environmental cycles. In mammals, the circadian clock is regulated by inputs from signaling pathways including glycogen synthase kinase 3 (GSK3). The drug lithium has actions on GSK3, and also on inositol metabolism. While it is suspected that lithium's inhibition of GSK3 causes rhythm changes, it is not known if inositol polyphosphates can also affect the circadian clock. We examined whether the signaling molecule inositol hexaphosphate (IP6) has effects on circadian rhythms. Using a bioluminescent reporter (Per2::luc) to measure circadian rhythms, we determined that IP6 increased rhythm amplitude and shortened period in NIH3T3 cells. The IP6 effect on amplitude was attenuated by selective siRNA knockdown of GSK3B and pharmacological blockade of AKT kinase. However, unlike lithium, IP6 did not induce serine-9 phosphorylation of GSK3B. The synthesis of IP6 involves the enzymes inositol polyphosphate multikinase (IPMK) and inositol pentakisphosphate 2-kinase (IPPK). Knockdown of Ippk had effects opposite to those of IP6, decreasing rhythm amplitude and lengthening period. Ipmk knockdown had few effects on rhythm alone, but attenuated the effects of lithium on rhythms. However, lithium did not change the intracellular content of IP6 in NIH3T3 cells or neurons. Pharmacological inhibition of the IP6 kinases (IP6K) increased rhythm amplitude and shortened period, suggesting secondary effects of inositol pyrophosphates may underlie the period shortening effect, but not the amplitude increasing effect of IP6. Overall, we conclude that inositol phosphates, in particular IP6 have effects on circadian rhythms. Manipulations affecting IP6 and related inositol phosphates may offer a novel means through which circadian rhythms can be regulated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular Signalling Elsevier

Inositol polyphosphates contribute to cellular circadian rhythms: Implications for understanding lithium's molecular mechanism

Loading next page...
 
/lp/elsevier/inositol-polyphosphates-contribute-to-cellular-circadian-rhythms-AawGWOp4lV
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0898-6568
eISSN
1873-3913
D.O.I.
10.1016/j.cellsig.2018.01.001
Publisher site
See Article on Publisher Site

Abstract

Most living organisms maintain cell autonomous circadian clocks that synchronize critical biological functions with daily environmental cycles. In mammals, the circadian clock is regulated by inputs from signaling pathways including glycogen synthase kinase 3 (GSK3). The drug lithium has actions on GSK3, and also on inositol metabolism. While it is suspected that lithium's inhibition of GSK3 causes rhythm changes, it is not known if inositol polyphosphates can also affect the circadian clock. We examined whether the signaling molecule inositol hexaphosphate (IP6) has effects on circadian rhythms. Using a bioluminescent reporter (Per2::luc) to measure circadian rhythms, we determined that IP6 increased rhythm amplitude and shortened period in NIH3T3 cells. The IP6 effect on amplitude was attenuated by selective siRNA knockdown of GSK3B and pharmacological blockade of AKT kinase. However, unlike lithium, IP6 did not induce serine-9 phosphorylation of GSK3B. The synthesis of IP6 involves the enzymes inositol polyphosphate multikinase (IPMK) and inositol pentakisphosphate 2-kinase (IPPK). Knockdown of Ippk had effects opposite to those of IP6, decreasing rhythm amplitude and lengthening period. Ipmk knockdown had few effects on rhythm alone, but attenuated the effects of lithium on rhythms. However, lithium did not change the intracellular content of IP6 in NIH3T3 cells or neurons. Pharmacological inhibition of the IP6 kinases (IP6K) increased rhythm amplitude and shortened period, suggesting secondary effects of inositol pyrophosphates may underlie the period shortening effect, but not the amplitude increasing effect of IP6. Overall, we conclude that inositol phosphates, in particular IP6 have effects on circadian rhythms. Manipulations affecting IP6 and related inositol phosphates may offer a novel means through which circadian rhythms can be regulated.

Journal

Cellular SignallingElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off