Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements

Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A... The retention performance of 5 different sorbent additives, including 2 pure additives, i.e., silica and alumina, and 3 typical natural mineral additives, i.e., kaolin, mica and pyrophyllite, on the release of sodium during the combustion of Zhundong coal is investigated via a combination of online multi-point Laser-Induced Breakdown Spectroscopy (LIBS) technique and offline measurements including inductively coupled plasma atomic emission spectrometer (ICP-AES), X-ray diffraction, and ash fusion temperatures (AFTs). The online and offline measurement results for the sodium release of Zhundong coal/additives mixtures are compared and verified with each other. Ternary phase diagram simulations are performed to further substantiate the impact of different additives on liquidus temperatures of Zhundong coal ash. All the five sorbent additives show a significant sodium retention effect, while alumina and kaolin are better additives considering the effects on AFTs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements

Loading next page...
 
/lp/elsevier/inhibition-of-sodium-release-from-zhundong-coal-via-the-addition-of-vM3oXpteXJ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.10.081
Publisher site
See Article on Publisher Site

Abstract

The retention performance of 5 different sorbent additives, including 2 pure additives, i.e., silica and alumina, and 3 typical natural mineral additives, i.e., kaolin, mica and pyrophyllite, on the release of sodium during the combustion of Zhundong coal is investigated via a combination of online multi-point Laser-Induced Breakdown Spectroscopy (LIBS) technique and offline measurements including inductively coupled plasma atomic emission spectrometer (ICP-AES), X-ray diffraction, and ash fusion temperatures (AFTs). The online and offline measurement results for the sodium release of Zhundong coal/additives mixtures are compared and verified with each other. Ternary phase diagram simulations are performed to further substantiate the impact of different additives on liquidus temperatures of Zhundong coal ash. All the five sorbent additives show a significant sodium retention effect, while alumina and kaolin are better additives considering the effects on AFTs.

Journal

FuelElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off