Inhibition of NF-κB pathway in fibroblast-like synoviocytes by α-mangostin implicated in protective effects on joints in rats suffering from adjuvant-induced arthritis

Inhibition of NF-κB pathway in fibroblast-like synoviocytes by α-mangostin implicated in... α-Mangostin (MG) is a bioactive compound isolated from mangosteen. This study was aimed to investigate effects of MG on adjuvant-induced arthritis (AA) in rats and decipher the underlying mechanisms. Clinical severity of AA was evaluated by paw oedema, arthritis score, and hematological parameters. Digital radiography (DR) and histological examinations were employed to assess joints destructions. Immune functions were evaluated by T cell subsets distribution. Effects on NF-κB pathway were investigated by immunohistochemical, western-blot and immunofluorescence methods both in vivo and vitro. It was found MG possessed superior anti-inflammatory effects in vivo, suggested by attenuated paw swelling, reduced inflammatory cells infiltration and decreased the secretion of TNF-α and IL-1β in serum. Meanwhile MG inhibited fibrous hyperplasia, synovial angiogenesis, cartilage and bone degradation in AA rats. Although MG exerted little effects on CD4+ population, it greatly decreased IFN-γ positive cells and promoted expression of FOXP3 in immune organs, indicating restoration of Th1/Treg cells ratio and recovery of immune homeostasis in vivo. Inhibition of NF-κB induced by MG was indicated by reduced the expression of p-p65 and VEGF in synovium. In vitro experiments found MG at 10 μg/ml significantly suppressed the expression and phosphorylation of key proteins implicated in NF-κB pathway and inhibited nucleus translocation of p65. These changes led to increased apoptosis and proliferation inhibition of HFLS-RA cells. The results demonstrated regulation of immune functions was deeply involved in the therapeutic actions of MG on AA, and it's inhibition on NF-κB in fibroblast-like synoviocytes was associated to the protective effects on joints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Immunopharmacology Elsevier

Inhibition of NF-κB pathway in fibroblast-like synoviocytes by α-mangostin implicated in protective effects on joints in rats suffering from adjuvant-induced arthritis

Loading next page...
 
/lp/elsevier/inhibition-of-nf-b-pathway-in-fibroblast-like-synoviocytes-by-QoJW7AzKMP
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1567-5769
eISSN
1878-1705
D.O.I.
10.1016/j.intimp.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

α-Mangostin (MG) is a bioactive compound isolated from mangosteen. This study was aimed to investigate effects of MG on adjuvant-induced arthritis (AA) in rats and decipher the underlying mechanisms. Clinical severity of AA was evaluated by paw oedema, arthritis score, and hematological parameters. Digital radiography (DR) and histological examinations were employed to assess joints destructions. Immune functions were evaluated by T cell subsets distribution. Effects on NF-κB pathway were investigated by immunohistochemical, western-blot and immunofluorescence methods both in vivo and vitro. It was found MG possessed superior anti-inflammatory effects in vivo, suggested by attenuated paw swelling, reduced inflammatory cells infiltration and decreased the secretion of TNF-α and IL-1β in serum. Meanwhile MG inhibited fibrous hyperplasia, synovial angiogenesis, cartilage and bone degradation in AA rats. Although MG exerted little effects on CD4+ population, it greatly decreased IFN-γ positive cells and promoted expression of FOXP3 in immune organs, indicating restoration of Th1/Treg cells ratio and recovery of immune homeostasis in vivo. Inhibition of NF-κB induced by MG was indicated by reduced the expression of p-p65 and VEGF in synovium. In vitro experiments found MG at 10 μg/ml significantly suppressed the expression and phosphorylation of key proteins implicated in NF-κB pathway and inhibited nucleus translocation of p65. These changes led to increased apoptosis and proliferation inhibition of HFLS-RA cells. The results demonstrated regulation of immune functions was deeply involved in the therapeutic actions of MG on AA, and it's inhibition on NF-κB in fibroblast-like synoviocytes was associated to the protective effects on joints.

Journal

International ImmunopharmacologyElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off