Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury

Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse... Traumatic brain injury (TBI) can lead to long-term motor and cognitive dysfunction, which can be at least partly attributed to blood-brain barrier (BBB) disruption. The mechanisms underlying post-TBI BBB disruption, however, are poorly understood thus far. Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) is a universally expressed ion transporter that maintains intracellular ion homeostasis by increasing intracellular K+ and Cl−. Having been characterized in stroke models, NKCC1 is activated in various cell types in the ischemic brain, and is thought to mediate BBB disruption, brain edema, and neuronal cell death. In this study, we tested the hypothesis that inhibition of NKCC1 may improve neurological outcomes via protecting against BBB disruption in a TBI mouse model. Adult male C57BL/6 J mice or NKCC1 deficient mice were subjected to controlled cortical impact (CCI). As an alternative to the genetic-based NKCC1 depletion, bumetanide, a selective NKCC1 inhibitor, was administrated (25 mg/kg, i.p.) 15 min after CCI and then every 6 h up to 48 h. Short-term sensorimotor function recovery was determined by rotarod, cylinder test, grid walking and foot fault test. BBB integrity was examined at 48 h post-CCI by measuring Evans blue extravasation, brain water content, and expression levels of tight junction proteins. Our results revealed that administration of bumetanide or genetic depletion of NKCC1 improved short-term neurological recovery against TBI. Bumetanide treatment markedly decreased brain water content and BBB leakage, correlated with reduction of MMP-9 expression and preventing the degradation of tight junction proteins. These findings suggest an important role of NKCC1 activation in mediating BBB disruption after TBI. Thus, NKCC1 inhibition may offer the potential for improving neurological outcomes in clinical TBI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemistry International Elsevier

Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury

Loading next page...
 
/lp/elsevier/inhibition-of-na-k-2cl-cotransporter-attenuates-blood-brain-barrier-j2BrezlC4i
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0197-0186
D.O.I.
10.1016/j.neuint.2017.05.020
Publisher site
See Article on Publisher Site

Abstract

Traumatic brain injury (TBI) can lead to long-term motor and cognitive dysfunction, which can be at least partly attributed to blood-brain barrier (BBB) disruption. The mechanisms underlying post-TBI BBB disruption, however, are poorly understood thus far. Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) is a universally expressed ion transporter that maintains intracellular ion homeostasis by increasing intracellular K+ and Cl−. Having been characterized in stroke models, NKCC1 is activated in various cell types in the ischemic brain, and is thought to mediate BBB disruption, brain edema, and neuronal cell death. In this study, we tested the hypothesis that inhibition of NKCC1 may improve neurological outcomes via protecting against BBB disruption in a TBI mouse model. Adult male C57BL/6 J mice or NKCC1 deficient mice were subjected to controlled cortical impact (CCI). As an alternative to the genetic-based NKCC1 depletion, bumetanide, a selective NKCC1 inhibitor, was administrated (25 mg/kg, i.p.) 15 min after CCI and then every 6 h up to 48 h. Short-term sensorimotor function recovery was determined by rotarod, cylinder test, grid walking and foot fault test. BBB integrity was examined at 48 h post-CCI by measuring Evans blue extravasation, brain water content, and expression levels of tight junction proteins. Our results revealed that administration of bumetanide or genetic depletion of NKCC1 improved short-term neurological recovery against TBI. Bumetanide treatment markedly decreased brain water content and BBB leakage, correlated with reduction of MMP-9 expression and preventing the degradation of tight junction proteins. These findings suggest an important role of NKCC1 activation in mediating BBB disruption after TBI. Thus, NKCC1 inhibition may offer the potential for improving neurological outcomes in clinical TBI.

Journal

Neurochemistry InternationalElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off