Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions

Influence of stainless steel surface properties on whey protein fouling under industrial... Heat-induced fouling is a financial and environmental burden for food and dairy industries and its control is therefore desperately needed. A better understanding of the fouling mechanisms and their relation to stainless steel surface properties is thus of considerable interest. This work aims at studying the impact of stainless steel's surface morphology and surface free energy on fouling by a model dairy solution by a close examination of the deposit's growth and adhesion at the substrate-fluid interface. Pristine model surfaces of controlled roughness and surface energy, i.e. native, mirror polished and biomimetic femtosecond laser textured stainless steel surfaces, fluorosilanized or not, were tested under isothermal conditions in a pilot pasteurization facility fed with a model dairy fluid (whey protein and calcium solution). Multi-scale characterizations of those surfaces before and after fouling, using a wide range of analytical tools (goniometry, SEM, ToF-SIMS, EPMA X-Ray mappings) allowed for a better comprehension of the impact of surface energy and morphology modifications on the fouling behavior while highlighting their complex interactions in fouling governance. Lower surface energy was shown to be an asset against deposit growth, as fluorosilanization of native stainless steel allowed to reduce fouling by 72% (wt.%). The relative sizes of surface relief versus fouling agents has been found crucial, as it impacts interlocking phenomena. Textured surfaces have shown a tremendous increase in fouling (+391% for textured, +86% for fluorosilanized textured). However, interesting fouling performances were obtained on smooth, hydrophobic surfaces, as a reduction by 83% of fouling weight was achieved with fluorosilanized polished samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions

Loading next page...
 
/lp/elsevier/influence-of-stainless-steel-surface-properties-on-whey-protein-ZNwCE4wikA
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2018.02.009
Publisher site
See Article on Publisher Site

Abstract

Heat-induced fouling is a financial and environmental burden for food and dairy industries and its control is therefore desperately needed. A better understanding of the fouling mechanisms and their relation to stainless steel surface properties is thus of considerable interest. This work aims at studying the impact of stainless steel's surface morphology and surface free energy on fouling by a model dairy solution by a close examination of the deposit's growth and adhesion at the substrate-fluid interface. Pristine model surfaces of controlled roughness and surface energy, i.e. native, mirror polished and biomimetic femtosecond laser textured stainless steel surfaces, fluorosilanized or not, were tested under isothermal conditions in a pilot pasteurization facility fed with a model dairy fluid (whey protein and calcium solution). Multi-scale characterizations of those surfaces before and after fouling, using a wide range of analytical tools (goniometry, SEM, ToF-SIMS, EPMA X-Ray mappings) allowed for a better comprehension of the impact of surface energy and morphology modifications on the fouling behavior while highlighting their complex interactions in fouling governance. Lower surface energy was shown to be an asset against deposit growth, as fluorosilanization of native stainless steel allowed to reduce fouling by 72% (wt.%). The relative sizes of surface relief versus fouling agents has been found crucial, as it impacts interlocking phenomena. Textured surfaces have shown a tremendous increase in fouling (+391% for textured, +86% for fluorosilanized textured). However, interesting fouling performances were obtained on smooth, hydrophobic surfaces, as a reduction by 83% of fouling weight was achieved with fluorosilanized polished samples.

Journal

Journal of Food EngineeringElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial