Influence of spin relaxation induced by molecular vibration on thermally activated delayed fluorescence

Influence of spin relaxation induced by molecular vibration on thermally activated delayed... Thermally activated delayed fluorescence (TADF), an effective mechanism to break the 25% statistic limit of organic light-emitting diodes (OLEDs) internal quantum efficiency, has become an active topic recently. The key to germinate TADF is the achievement of efficient reverse intersystem crossing from triplet spin state to singlet state by thermal activation, which is obviously a temperature dependence process. The direct way of thermal activation is the absorption of phonon energy, in which the transition rate from triplet state to singlet state has the Boltzmann distribution function dependence of the temperature. Nevertheless, the molecular vibration could engender spin relaxation of excitons, giving rise to different temperature dependence. This could be regarded as an indirect way of thermal activation. Here, we investigate the effect of spin relaxation caused by molecular vibration on TADF and analyze the change principles of the efficiency of TADF processes versus temperature. It is found that the experimental dependence could be well explained when the spin relaxation induced by molecular vibration is considered. Therefore, the consideration of this process helps us to understand TADF more comprehensively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Influence of spin relaxation induced by molecular vibration on thermally activated delayed fluorescence

Loading next page...
 
/lp/elsevier/influence-of-spin-relaxation-induced-by-molecular-vibration-on-yMO6oerOiG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.036
Publisher site
See Article on Publisher Site

Abstract

Thermally activated delayed fluorescence (TADF), an effective mechanism to break the 25% statistic limit of organic light-emitting diodes (OLEDs) internal quantum efficiency, has become an active topic recently. The key to germinate TADF is the achievement of efficient reverse intersystem crossing from triplet spin state to singlet state by thermal activation, which is obviously a temperature dependence process. The direct way of thermal activation is the absorption of phonon energy, in which the transition rate from triplet state to singlet state has the Boltzmann distribution function dependence of the temperature. Nevertheless, the molecular vibration could engender spin relaxation of excitons, giving rise to different temperature dependence. This could be regarded as an indirect way of thermal activation. Here, we investigate the effect of spin relaxation caused by molecular vibration on TADF and analyze the change principles of the efficiency of TADF processes versus temperature. It is found that the experimental dependence could be well explained when the spin relaxation induced by molecular vibration is considered. Therefore, the consideration of this process helps us to understand TADF more comprehensively.

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off