Influence of orientation and volume fraction of Aramid fabric on abrasive wear performance of polyethersulfone composites

Influence of orientation and volume fraction of Aramid fabric on abrasive wear performance of... In case of fabric reinforced composites of specialty polymers influence of orientation of fabric and its volume fraction on tribo-behaviour is sparingly studied. In our earlier work, we have reported on the influence of amount of Aramid fabric (AF) in polyethersulfone (PES) on abrasive wear performance. However, orientation effect of fabric with respect to abrading plane was not investigated. In this work three orientations of composites of PES containing Aramid (Kevlar 29) fabric with three concentrations 64, 72 and 83 wt.% were selected to study the influence on abrasive wear performance. Composites developed by compression molding technique were characterized for their mechanical and physical properties. The abrasive wear performance of the composites was evaluated by abrading 10 mm × 10 mm × 10 mm sample against silicon carbide (SiC) paper under various loads and two grades of abrasive papers. The fabric reinforcement enhanced the abrasive wear resistance of PES significantly (approximately 1.35–9.46 times depending on the operating conditions). It was observed that 83% fabric composite showed the highest resistance to abrasive wear and impact along with the best tensile strength and elongation properties. Its flexural strength and ILSS values, however, were the lowest. Sixty-four percent fabric composite, on the other hand, showed an exactly reverse trend among the three composites. Among the three orientations, fibres in normal and parallel (N–P) and normal and anti-parallel (N–AP) direction with respect to sliding plane proved to impart maximum wear resistance. N–P was best for light loads while N–AP was best for high loading conditions. Orientation parallel and anti-parallel (P–AP) was least beneficial in this respect. Moreover, the extent of improvement very much depended on the operating parameters such as grit size and load. Benefits endowed due to reinforcement were higher at less coarse grade paper. With increase in load, however, wear rate of composites with N–P orientation increased and for other two orientations it decreased. Thus, for severe operating conditions, N–AP orientation proved to be most beneficial. SEM studies proved supporting for understanding the influence of orientation on wear performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Influence of orientation and volume fraction of Aramid fabric on abrasive wear performance of polyethersulfone composites

Wear, Volume 260 (4) – Feb 24, 2006

Loading next page...
 
/lp/elsevier/influence-of-orientation-and-volume-fraction-of-aramid-fabric-on-VW0ieNR3J0
Publisher
Elsevier
Copyright
Copyright © 2005 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2005.02.087
Publisher site
See Article on Publisher Site

Abstract

In case of fabric reinforced composites of specialty polymers influence of orientation of fabric and its volume fraction on tribo-behaviour is sparingly studied. In our earlier work, we have reported on the influence of amount of Aramid fabric (AF) in polyethersulfone (PES) on abrasive wear performance. However, orientation effect of fabric with respect to abrading plane was not investigated. In this work three orientations of composites of PES containing Aramid (Kevlar 29) fabric with three concentrations 64, 72 and 83 wt.% were selected to study the influence on abrasive wear performance. Composites developed by compression molding technique were characterized for their mechanical and physical properties. The abrasive wear performance of the composites was evaluated by abrading 10 mm × 10 mm × 10 mm sample against silicon carbide (SiC) paper under various loads and two grades of abrasive papers. The fabric reinforcement enhanced the abrasive wear resistance of PES significantly (approximately 1.35–9.46 times depending on the operating conditions). It was observed that 83% fabric composite showed the highest resistance to abrasive wear and impact along with the best tensile strength and elongation properties. Its flexural strength and ILSS values, however, were the lowest. Sixty-four percent fabric composite, on the other hand, showed an exactly reverse trend among the three composites. Among the three orientations, fibres in normal and parallel (N–P) and normal and anti-parallel (N–AP) direction with respect to sliding plane proved to impart maximum wear resistance. N–P was best for light loads while N–AP was best for high loading conditions. Orientation parallel and anti-parallel (P–AP) was least beneficial in this respect. Moreover, the extent of improvement very much depended on the operating parameters such as grit size and load. Benefits endowed due to reinforcement were higher at less coarse grade paper. With increase in load, however, wear rate of composites with N–P orientation increased and for other two orientations it decreased. Thus, for severe operating conditions, N–AP orientation proved to be most beneficial. SEM studies proved supporting for understanding the influence of orientation on wear performance.

Journal

WearElsevier

Published: Feb 24, 2006

References

  • Influence of fillers on abrasive wear of short glass fibre reinforced polyamide composites
    Rajesh, J.J.; Bijwe, J.; Tewari, U.S.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off