Influence of femtosecond laser treated surfaces on the mode I fracture toughness of carbon-epoxy bonded joints

Influence of femtosecond laser treated surfaces on the mode I fracture toughness of carbon-epoxy... The influence of laser surface treatments on mode I fracture toughness of carbon fibre reinforced composites bonded joints is addressed in this work. Five different surface treatments considering several combinations of laser fluence and scanning speeds were applied prior to bonding of the adherents, aiming to increase the adhesion and, consequently, the fracture resistance of the bonded joint. Mode I fracture characterisation considering Double Cantilever Beam tests was subsequently performed to assess the influence of the several treatments on the critical fracture toughness under pure mode I loading. A suitable compliance based data reduction scheme was used to obtain the resistance curves as function of the equivalent crack length. It was verified that a laser treatment based on an interference scheme is the most effective surface preparation concerning maximization of the mode I fracture energy. A finite element analysis including cohesive zone modelling was performed to validate the procedure and experimental conclusions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Influence of femtosecond laser treated surfaces on the mode I fracture toughness of carbon-epoxy bonded joints

Loading next page...
 
/lp/elsevier/influence-of-femtosecond-laser-treated-surfaces-on-the-mode-i-fracture-UHnLINPWWV
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2018.01.005
Publisher site
See Article on Publisher Site

Abstract

The influence of laser surface treatments on mode I fracture toughness of carbon fibre reinforced composites bonded joints is addressed in this work. Five different surface treatments considering several combinations of laser fluence and scanning speeds were applied prior to bonding of the adherents, aiming to increase the adhesion and, consequently, the fracture resistance of the bonded joint. Mode I fracture characterisation considering Double Cantilever Beam tests was subsequently performed to assess the influence of the several treatments on the critical fracture toughness under pure mode I loading. A suitable compliance based data reduction scheme was used to obtain the resistance curves as function of the equivalent crack length. It was verified that a laser treatment based on an interference scheme is the most effective surface preparation concerning maximization of the mode I fracture energy. A finite element analysis including cohesive zone modelling was performed to validate the procedure and experimental conclusions.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off