“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Induction of Senescence-like State and Suppression of Telomerase Activity through Inhibition of HPV E6/E7 Gene Expression in Cells Immortalized by HPV16 DNA

The E6 and E7 oncoproteins of human papillomavirus (HPV) play a major role in the development of cervical carcinoma. In this study, a recombinant adenovirus that expresses the bovine papillomavirus (BPV) E2, which has been shown to inhibit HPV early gene expression, was delivered to two HPV-immortalized cell lines as well as CaSki, a cervical carcinoma cell line. We tested whether the carcinoma and the immortal cells were equally affected by the expression of BPV E2. In all cell lines, BPV E2-mediated inhibition of HPV E6/E7 expression caused a dramatic suppression of cell growth, being preceded by the activation of the p53–Rb growth-inhibitory pathway, and a decrease in hTERT mRNA expression and telomerase activity. This suggests that the HPV E6 and E7 proteins are required not only for induction of the proliferative phenotype and telomerase activity, but also for their maintenance. In both the carcinoma and the immortal lines, the number of cells with enlarged cytoplasm and senescence-associated β-galactosidase activity, which are markers for cellular senescence, was significantly increased. These results suggest that a senescence program exists in cells immortalized by HPV DNA as well as in cervical carcinoma cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Cell Research Elsevier
Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.