Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight

Induced structural changes of humic acid by exposure of polystyrene microplastics: A... The occurrence of microplastics (MPs) as emerging contaminants in the environment may cause changes in water or sediment characteristics, and further affect their biogeochemical cycles. Thus, insights into the interactions between dissolved organic matter (DOM) and MPs are essential for the assessment of environmental impacts of MPs in ecosystems. Integrating spectroscopic methods with chemometric analyses, this work explored the chemical and microstructural changes of DOM-MP complex to reveal the mechanism of DOM-MP interaction at a molecular level. MPs were found to interact with the aromatic structure of DOM via π-π conjugation, then be entrapped in the DOM polymers by the carboxyl groups and C=O bonds, constituting a highly conjugated co-polymer with increased electron density. This induced the fluorescence intensity increase in DOM. The interaction affinity of DOM-MP was highly dependent on the MP size and solution pH. This work offers a new insight into the impact of MP discharge on environment and may provide an analytical framework for evaluating MP hetero-aggregation and the roles of MPs in the transportation of other contaminants. Furthermore, the integrated methods used in this work exhibit potential applications in exploring the fragmentation processes of MPs and formation of secondary MPs under natural conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight

Loading next page...
 
/lp/elsevier/induced-structural-changes-of-humic-acid-by-exposure-of-polystyrene-Bb95qWh5Nm
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.027
Publisher site
See Article on Publisher Site

Abstract

The occurrence of microplastics (MPs) as emerging contaminants in the environment may cause changes in water or sediment characteristics, and further affect their biogeochemical cycles. Thus, insights into the interactions between dissolved organic matter (DOM) and MPs are essential for the assessment of environmental impacts of MPs in ecosystems. Integrating spectroscopic methods with chemometric analyses, this work explored the chemical and microstructural changes of DOM-MP complex to reveal the mechanism of DOM-MP interaction at a molecular level. MPs were found to interact with the aromatic structure of DOM via π-π conjugation, then be entrapped in the DOM polymers by the carboxyl groups and C=O bonds, constituting a highly conjugated co-polymer with increased electron density. This induced the fluorescence intensity increase in DOM. The interaction affinity of DOM-MP was highly dependent on the MP size and solution pH. This work offers a new insight into the impact of MP discharge on environment and may provide an analytical framework for evaluating MP hetero-aggregation and the roles of MPs in the transportation of other contaminants. Furthermore, the integrated methods used in this work exhibit potential applications in exploring the fragmentation processes of MPs and formation of secondary MPs under natural conditions.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off