Induced macrophage activation in live excised atherosclerotic plaque

Induced macrophage activation in live excised atherosclerotic plaque Atherosclerotic plaques are complex tissues containing many different cell types. Macrophages contribute to inflammation, formation of the necrotic core, and plaque rupture. We examined whether macrophages in plaque can be activated and compared this to monolayer cells. The volume of calcium in the plaque was compared to the level of macrophage activation measured by total neopterin output. Carotid plaque samples were cut into 3 mm sections and cultured for up to 96 h. Live sections were stimulated with interferon-γ, phytohaemagglutinin or phorbol 12-myristate 13-acetate. Macrophage activation and oxidative stress were monitored by total neopterin (oxidized and non-oxidized 7,8-dihydroneopterin) and neopterin levels every 24 h for up to 4 d. The calcium content of two plaques was investigated by spectral imaging. Direct stimulation of macrophages in plaque sections with interferon-γ caused a sustained increase in neopterin (p = .037) and total neopterin (p = .003). The addition of phorbol 12-myristate 13-acetate to plaque had no significant effect on total neopterin production (p = .073) but increased neopterin (p = .037) whereas phytohaemagglutinin caused a significant increase in both neopterin and total neopterin (p = .0279 and .0168). There was an inverse association (R2 = 0.91) between the volume of calcium and macrophage activation as measured by total neopterin production in stimulated plaque tissue. Resident macrophages within excised carotid plaque activated either directly or indirectly generate the biomarkers 7,8-dihydroneopterin and neopterin. Macrophage activation rather than the oxidative environment is associated with plaque calcification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunobiology Elsevier

Induced macrophage activation in live excised atherosclerotic plaque

Loading next page...
 
/lp/elsevier/induced-macrophage-activation-in-live-excised-atherosclerotic-plaque-ucgkiqIgVw
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier GmbH
ISSN
0171-2985
eISSN
1878-3279
D.O.I.
10.1016/j.imbio.2018.03.002
Publisher site
See Article on Publisher Site

Abstract

Atherosclerotic plaques are complex tissues containing many different cell types. Macrophages contribute to inflammation, formation of the necrotic core, and plaque rupture. We examined whether macrophages in plaque can be activated and compared this to monolayer cells. The volume of calcium in the plaque was compared to the level of macrophage activation measured by total neopterin output. Carotid plaque samples were cut into 3 mm sections and cultured for up to 96 h. Live sections were stimulated with interferon-γ, phytohaemagglutinin or phorbol 12-myristate 13-acetate. Macrophage activation and oxidative stress were monitored by total neopterin (oxidized and non-oxidized 7,8-dihydroneopterin) and neopterin levels every 24 h for up to 4 d. The calcium content of two plaques was investigated by spectral imaging. Direct stimulation of macrophages in plaque sections with interferon-γ caused a sustained increase in neopterin (p = .037) and total neopterin (p = .003). The addition of phorbol 12-myristate 13-acetate to plaque had no significant effect on total neopterin production (p = .073) but increased neopterin (p = .037) whereas phytohaemagglutinin caused a significant increase in both neopterin and total neopterin (p = .0279 and .0168). There was an inverse association (R2 = 0.91) between the volume of calcium and macrophage activation as measured by total neopterin production in stimulated plaque tissue. Resident macrophages within excised carotid plaque activated either directly or indirectly generate the biomarkers 7,8-dihydroneopterin and neopterin. Macrophage activation rather than the oxidative environment is associated with plaque calcification.

Journal

ImmunobiologyElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off