Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population

Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose... Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments.To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk.Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm2 h−1) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10−5): in particular, the risk due to the open fireplace (8.8 × 10−3) was non-negligible when compared to the overall lung cancer risk of typical Italian population. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population

Loading next page...
 
/lp/elsevier/indoor-exposure-to-particles-emitted-by-biomass-burning-heating-oU0HJxCxVE
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.055
Publisher site
See Article on Publisher Site

Abstract

Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments.To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk.Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm2 h−1) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10−5): in particular, the risk due to the open fireplace (8.8 × 10−3) was non-negligible when compared to the overall lung cancer risk of typical Italian population.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off