Indirect plasma inactivation by a low temperature atmospheric pressure plasma (LTAPP) system

Indirect plasma inactivation by a low temperature atmospheric pressure plasma (LTAPP) system The aim of this paper is to evaluate the inactivation effect of indirect low temperature plasma exposure at atmospheric pressure produced by the original Low Temperature Atmospheric Pressure Plasma (LTAPP) system. In this system, the low temperature plasma is generated using a high voltage power supply in oxygen at atmospheric pressure. The obtained survivor curves for Escherichia coli (G−), Bacillus subtilis (G+), Staphylococcus aureus (G+), Candida albicans (Yeast), and Saccharomyces cerevisiae (Yeast) showed that the LTAPP system could inactivate them. The optical microscope images of B. subtilis and S. cerevisiae treated have confirmed the inactivation effect of the LTAPP system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electrostatics Elsevier

Indirect plasma inactivation by a low temperature atmospheric pressure plasma (LTAPP) system

Loading next page...
 
/lp/elsevier/indirect-plasma-inactivation-by-a-low-temperature-atmospheric-pressure-fhjuGav0zS
Publisher
Elsevier
Copyright
Copyright © 2014 Elsevier B.V.
ISSN
0304-3886
eISSN
1873-5738
D.O.I.
10.1016/j.elstat.2014.03.007
Publisher site
See Article on Publisher Site

Abstract

The aim of this paper is to evaluate the inactivation effect of indirect low temperature plasma exposure at atmospheric pressure produced by the original Low Temperature Atmospheric Pressure Plasma (LTAPP) system. In this system, the low temperature plasma is generated using a high voltage power supply in oxygen at atmospheric pressure. The obtained survivor curves for Escherichia coli (G−), Bacillus subtilis (G+), Staphylococcus aureus (G+), Candida albicans (Yeast), and Saccharomyces cerevisiae (Yeast) showed that the LTAPP system could inactivate them. The optical microscope images of B. subtilis and S. cerevisiae treated have confirmed the inactivation effect of the LTAPP system.

Journal

Journal of ElectrostaticsElsevier

Published: Jun 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial