Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells

Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in... N18TG2 neuroblastoma cells co-express δ-opioid and CB1-cannabinoid receptors. Both receptors are negatively coupled to adenylyl cyclase through pertussis toxin-sensitive GTP-binding proteins. In the present study, we confirmed the independent activity of opioid and cannabinoid agonists, and investigated chronic interactions between the two signal transduction pathways in these cells. Opioid and cannabinoid agonists stimulated ( 35 S )guanosine-5′- O -(3-thiotriphosphate) binding to N18TG2 membranes. When the opioid agonist etorphine and the cannabinoid agonist desacetyllevonantradol (DALN) were applied together, the stimulation was similar to the arithmetic sum of the two separate effects. This additivity existed even after partial ablation of the G-proteins reservoir with a low concentration of pertussis toxin, indicating that opioid and cannabinoid receptors activate different pools of G-proteins in N18TG2 cells. Chronic treatment of the cells with either opioid or cannabinoid agonists induced desensitization to the respective drug. In addition, asymmetric cross-desensitization was found: while long-term exposure to DALN induced homologous desensitization, and did not reduce the effect of etorphine, long-term exposure to etorphine attenuated the cannabinoid activation of G-proteins. Chronic exposure to either DALN or etorphine not only induced desensitization, but also elevated the basal activity of G-proteins in the exposed cells. The combination of the two drugs did not yield an additive activation, suggesting that chronic exposure of N18TG2 cultures to cannabinoid and opioid agonists modified a common responding element within the cells. This work presents the N18TG2 neuroblastoma as a suitable experimental model to study the molecular mechanism(s) underlying chronic interactions between opioid and cannabinoid drugs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells

Loading next page...
 
/lp/elsevier/independence-of-and-interactions-between-cannabinoid-and-opioid-signal-w0xGdE70Sv
Publisher site
See Article on Publisher Site

Abstract

N18TG2 neuroblastoma cells co-express δ-opioid and CB1-cannabinoid receptors. Both receptors are negatively coupled to adenylyl cyclase through pertussis toxin-sensitive GTP-binding proteins. In the present study, we confirmed the independent activity of opioid and cannabinoid agonists, and investigated chronic interactions between the two signal transduction pathways in these cells. Opioid and cannabinoid agonists stimulated ( 35 S )guanosine-5′- O -(3-thiotriphosphate) binding to N18TG2 membranes. When the opioid agonist etorphine and the cannabinoid agonist desacetyllevonantradol (DALN) were applied together, the stimulation was similar to the arithmetic sum of the two separate effects. This additivity existed even after partial ablation of the G-proteins reservoir with a low concentration of pertussis toxin, indicating that opioid and cannabinoid receptors activate different pools of G-proteins in N18TG2 cells. Chronic treatment of the cells with either opioid or cannabinoid agonists induced desensitization to the respective drug. In addition, asymmetric cross-desensitization was found: while long-term exposure to DALN induced homologous desensitization, and did not reduce the effect of etorphine, long-term exposure to etorphine attenuated the cannabinoid activation of G-proteins. Chronic exposure to either DALN or etorphine not only induced desensitization, but also elevated the basal activity of G-proteins in the exposed cells. The combination of the two drugs did not yield an additive activation, suggesting that chronic exposure of N18TG2 cultures to cannabinoid and opioid agonists modified a common responding element within the cells. This work presents the N18TG2 neuroblastoma as a suitable experimental model to study the molecular mechanism(s) underlying chronic interactions between opioid and cannabinoid drugs.

Journal

Brain ResearchElsevier

Published: Sep 21, 1998

References

  • An assessment of the role of opioid receptors in the response to cannabimimetic drugs
    A Devane, W.; Spain, J.W.; Coscia, C.J.; Howlett, A.C.
  • Opioid receptor-coupled G-proteins in rat locus coeruleus membranes: decrease in activity after chronic morphine treatment
    Selley, D.E.; Nestler, E.J.; Breivogel, C.S.; Childers, S.R.
  • G-proteins and opioid receptor-mediated signalling
    Standifer, K.M.; Pasternak, G.W.
  • Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine
    Vela, G.; Ruiz-Gayo, M.; Fuentes, J.A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off