Incidence of marine debris in cetaceans stranded and bycaught in Ireland: Recent findings and a review of historical knowledge

Incidence of marine debris in cetaceans stranded and bycaught in Ireland: Recent findings and a... Interactions between marine mammals and plastic debris have been the focus of studies for many years. Examples of interactions include entanglement in discarded fishing items or the presence of ingested debris in digestive tracts. Plastics, including microplastics, are a form of marine debris globally distributed in coastal areas, oceanic waters and deep seas. Cetaceans which strand along the coast present a unique opportunity to study interactions between animals with macro- and microplastics. A combination of novel techniques and a review of historical data was used to complete an extensive study of cetaceans interacting with marine debris within Irish waters. Of the 25 species of marine mammals reported in Irish waters, at least 19 species were reported stranded between 1990 and 2015 (n = 2934). Two hundred and forty-one of the stranded cetaceans presented signs of possible entanglement or interactions with fisheries. Of this number, 52.7% were positively identified as bycatch or as entangled in fisheries items, 26.6% were classified as mutilated and 20.7% could not be related to fisheries but showed signs of entanglement. In addition, 274 cetaceans were recorded as by-catch during observer programmes targeting albacore tuna. Post-mortem examinations were carried out on a total of 528 stranded and bycaught individuals and 45 (8.5%) had marine debris in their digestive tracts: 21 contained macrodebris, 21 contained microdebris and three had both macro- and microdebris. Forty percent of the ingested debris were fisheries related items. All 21 individuals investigated with the novel method for microplastics contained microplastics, composed of fibres (83.6%) and fragments (16.4%). Deep diving species presented more incidences of macrodebris ingestion but it was not possible to investigate this relationship to ecological habitat. More research on the plastic implications to higher trophic level organisms is required to understand the effects of these pollutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Incidence of marine debris in cetaceans stranded and bycaught in Ireland: Recent findings and a review of historical knowledge

Loading next page...
 
/lp/elsevier/incidence-of-marine-debris-in-cetaceans-stranded-and-bycaught-in-Sq0c5DjOTW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.09.070
Publisher site
See Article on Publisher Site

Abstract

Interactions between marine mammals and plastic debris have been the focus of studies for many years. Examples of interactions include entanglement in discarded fishing items or the presence of ingested debris in digestive tracts. Plastics, including microplastics, are a form of marine debris globally distributed in coastal areas, oceanic waters and deep seas. Cetaceans which strand along the coast present a unique opportunity to study interactions between animals with macro- and microplastics. A combination of novel techniques and a review of historical data was used to complete an extensive study of cetaceans interacting with marine debris within Irish waters. Of the 25 species of marine mammals reported in Irish waters, at least 19 species were reported stranded between 1990 and 2015 (n = 2934). Two hundred and forty-one of the stranded cetaceans presented signs of possible entanglement or interactions with fisheries. Of this number, 52.7% were positively identified as bycatch or as entangled in fisheries items, 26.6% were classified as mutilated and 20.7% could not be related to fisheries but showed signs of entanglement. In addition, 274 cetaceans were recorded as by-catch during observer programmes targeting albacore tuna. Post-mortem examinations were carried out on a total of 528 stranded and bycaught individuals and 45 (8.5%) had marine debris in their digestive tracts: 21 contained macrodebris, 21 contained microdebris and three had both macro- and microdebris. Forty percent of the ingested debris were fisheries related items. All 21 individuals investigated with the novel method for microplastics contained microplastics, composed of fibres (83.6%) and fragments (16.4%). Deep diving species presented more incidences of macrodebris ingestion but it was not possible to investigate this relationship to ecological habitat. More research on the plastic implications to higher trophic level organisms is required to understand the effects of these pollutants.

Journal

Environmental PollutionElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off