In vitro starch digestibility and estimated glycemic index of chemically modified corn starches

In vitro starch digestibility and estimated glycemic index of chemically modified corn starches Normal corn starch was chemically modified by oxidation, acetylation, hydroxypropylation, and cross-linking, and the digestibility and glycemic indices (GI) of these modified starches were examined by in vitro hydrolysis using pancreatic α-amylase. During the early stage of hydrolysis (up to 60 min) with prime (ungelatinized) starches, the modified starches were hydrolyzed at greater extents than the unmodified starches. However, at the late stage of hydrolysis (after 3 h), the modified starches showed lower degrees of hydrolysis than the unmodified starch. The amount of resistant starch (RS) in prime starches were 23.4%, 35.1%, 34.2%, and 13.9% in the acetylated, oxidized, hydroxypropylated, and cross-linked starches, respectively, whereas the unmodified starch contained 11.9%. The amount of slowly digestible starch (SDS) was decreased as the RS content was increased by the modification, indicating that some of the SDS transformed to RS. By gelatinization, all the starches, regardless of type of modification, were more quickly hydrolyzed and reached maximum levels within 20 min. Like the prime starches, the modified starches contained higher contents of undigested starches after gelatinization. The modifications except cross-linking reduced rapidly digestible starch (RDS) content but increased the RS content when the starches were gelatinized. The hydroxypropylated starch had the lowest GI values, which were estimated from the hydrolysis profiles (70.6 and 86.2 in prime and gelatinized states, respectively), whereas the GI values of cross-linked starch were similar to those of the unmodified starch. Therefore, chemical substitution such as hydroxypropylation and acetylation, and oxidation can be used to reduce the starch digestibility and raise the RS content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Research International Elsevier

In vitro starch digestibility and estimated glycemic index of chemically modified corn starches

Loading next page...
 
/lp/elsevier/in-vitro-starch-digestibility-and-estimated-glycemic-index-of-fbRgorlPU0
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0963-9969
DOI
10.1016/j.foodres.2008.04.006
Publisher site
See Article on Publisher Site

Abstract

Normal corn starch was chemically modified by oxidation, acetylation, hydroxypropylation, and cross-linking, and the digestibility and glycemic indices (GI) of these modified starches were examined by in vitro hydrolysis using pancreatic α-amylase. During the early stage of hydrolysis (up to 60 min) with prime (ungelatinized) starches, the modified starches were hydrolyzed at greater extents than the unmodified starches. However, at the late stage of hydrolysis (after 3 h), the modified starches showed lower degrees of hydrolysis than the unmodified starch. The amount of resistant starch (RS) in prime starches were 23.4%, 35.1%, 34.2%, and 13.9% in the acetylated, oxidized, hydroxypropylated, and cross-linked starches, respectively, whereas the unmodified starch contained 11.9%. The amount of slowly digestible starch (SDS) was decreased as the RS content was increased by the modification, indicating that some of the SDS transformed to RS. By gelatinization, all the starches, regardless of type of modification, were more quickly hydrolyzed and reached maximum levels within 20 min. Like the prime starches, the modified starches contained higher contents of undigested starches after gelatinization. The modifications except cross-linking reduced rapidly digestible starch (RDS) content but increased the RS content when the starches were gelatinized. The hydroxypropylated starch had the lowest GI values, which were estimated from the hydrolysis profiles (70.6 and 86.2 in prime and gelatinized states, respectively), whereas the GI values of cross-linked starch were similar to those of the unmodified starch. Therefore, chemical substitution such as hydroxypropylation and acetylation, and oxidation can be used to reduce the starch digestibility and raise the RS content.

Journal

Food Research InternationalElsevier

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off