In vitro identification of mitochondrial oxidative stress production by time-resolved fluorescence imaging of glioma cells

In vitro identification of mitochondrial oxidative stress production by time-resolved... Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker™ Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Elsevier

In vitro identification of mitochondrial oxidative stress production by time-resolved fluorescence imaging of glioma cells

Loading next page...
 
/lp/elsevier/in-vitro-identification-of-mitochondrial-oxidative-stress-production-LGDkcz00Ik
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-4889
D.O.I.
10.1016/j.bbamcr.2018.01.012
Publisher site
See Article on Publisher Site

Abstract

Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker™ Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Cell ResearchElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off