In-situ LA–ICP–MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China

In-situ LA–ICP–MS U–Pb geochronology and trace elements analysis of polygenetic titanite... The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0±5.9Ma, consistent with the porphyry zircon U–Pb age (36.07±0.43Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1±1.0Ma (MSWD=2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ore Geology Reviews Elsevier

In-situ LA–ICP–MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China

Loading next page...
 
/lp/elsevier/in-situ-la-icp-ms-u-pb-geochronology-and-trace-elements-analysis-of-qelPe2RLzC
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0169-1368
eISSN
1872-7360
D.O.I.
10.1016/j.oregeorev.2016.02.001
Publisher site
See Article on Publisher Site

Abstract

The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0±5.9Ma, consistent with the porphyry zircon U–Pb age (36.07±0.43Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1±1.0Ma (MSWD=2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.

Journal

Ore Geology ReviewsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off