In silico study toward the identification of new and safe potential inhibitors of photosynthetic electron transport

In silico study toward the identification of new and safe potential inhibitors of photosynthetic... To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

In silico study toward the identification of new and safe potential inhibitors of photosynthetic electron transport

Loading next page...
 
/lp/elsevier/in-silico-study-toward-the-identification-of-new-and-safe-potential-KRzU7dbs4D
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.02.016
Publisher site
See Article on Publisher Site

Abstract

To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off