Improving urban flow predictions through data assimilation

Improving urban flow predictions through data assimilation Detailed aerodynamic information of local wind flow patterns in urban canopies is essential for the design of sustainable and resilient urban areas. Computational Fluid Dynamics (CFD) can be used to analyze these complex flows, but uncertainties in the models can negatively impact the accuracy of the results. Data assimilation, using measurements from wind sensors located within the urban canopy, provides exciting opportunities to improve the quality of the predictions. The present study explores the deployment of several wind sensors on Stanford's campus to support future validation of CFD predictions with uncertainty quantification and data assimilation. We focus on uncertainty in the incoming wind direction and magnitude, and identify optimal sensor placement to enable accurate inference of these parameters. First, a set of Reynolds-averaged Navier-Stokes simulations is performed to build a surrogate model for the local velocity as a function of the inflow conditions. Subsequently, artificial wind observations are generated from realizations of the surrogate model, and an inverse ensemble Kalman filter is used to infer the inflow conditions from these observations. We investigate the influence of (1) the sensor location, (2) the number of sensors, and (3) the presence of noise or a bias in the measurement data. The analysis shows that multiple roof level sensors should enable robust assimilation of the inflow boundary conditions. In the future field experiment, sensors will be placed in these locations to validate the methodology using actual field measurement data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Improving urban flow predictions through data assimilation

Loading next page...
 
/lp/elsevier/improving-urban-flow-predictions-through-data-assimilation-cMscGOl6NL
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.032
Publisher site
See Article on Publisher Site

Abstract

Detailed aerodynamic information of local wind flow patterns in urban canopies is essential for the design of sustainable and resilient urban areas. Computational Fluid Dynamics (CFD) can be used to analyze these complex flows, but uncertainties in the models can negatively impact the accuracy of the results. Data assimilation, using measurements from wind sensors located within the urban canopy, provides exciting opportunities to improve the quality of the predictions. The present study explores the deployment of several wind sensors on Stanford's campus to support future validation of CFD predictions with uncertainty quantification and data assimilation. We focus on uncertainty in the incoming wind direction and magnitude, and identify optimal sensor placement to enable accurate inference of these parameters. First, a set of Reynolds-averaged Navier-Stokes simulations is performed to build a surrogate model for the local velocity as a function of the inflow conditions. Subsequently, artificial wind observations are generated from realizations of the surrogate model, and an inverse ensemble Kalman filter is used to infer the inflow conditions from these observations. We investigate the influence of (1) the sensor location, (2) the number of sensors, and (3) the presence of noise or a bias in the measurement data. The analysis shows that multiple roof level sensors should enable robust assimilation of the inflow boundary conditions. In the future field experiment, sensors will be placed in these locations to validate the methodology using actual field measurement data.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off