Improving the signal detection accuracy of functional Magnetic Resonance Imaging

Improving the signal detection accuracy of functional Magnetic Resonance Imaging A major drawback of functional Magnetic Resonance Imaging (fMRI) concerns the lack of detection accuracy of the measured signal. Although this limitation stems in part from the neuro-vascular nature of the fMRI signal, it also reflects particular methodological decisions in the fMRI data analysis pathway. Here we show that the signal detection accuracy of fMRI is affected by the specific way in which whole-brain volumes are created from individually acquired brain slices, and by the method of statistically extracting signals from the sampled data. To address these limitations, we propose a new framework for fMRI data analysis. The new framework creates whole-brain volumes from individual brain slices that are all acquired at the same point in time relative to a presented stimulus. These whole-brain volumes contain minimal temporal distortions, and are available at a high temporal resolution. In addition, statistical signal extraction occurred on the basis of a non-standard time point-by-time point approach. We evaluated the detection accuracy of the extracted signal in the standard and new framework with simulated and real-world fMRI data. The new slice-based data-analytic framework yields greatly improved signal detection accuracy of fMRI signals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Improving the signal detection accuracy of functional Magnetic Resonance Imaging

Loading next page...
 
/lp/elsevier/improving-the-signal-detection-accuracy-of-functional-magnetic-yKv6jvbrdv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.01.076
Publisher site
See Article on Publisher Site

Abstract

A major drawback of functional Magnetic Resonance Imaging (fMRI) concerns the lack of detection accuracy of the measured signal. Although this limitation stems in part from the neuro-vascular nature of the fMRI signal, it also reflects particular methodological decisions in the fMRI data analysis pathway. Here we show that the signal detection accuracy of fMRI is affected by the specific way in which whole-brain volumes are created from individually acquired brain slices, and by the method of statistically extracting signals from the sampled data. To address these limitations, we propose a new framework for fMRI data analysis. The new framework creates whole-brain volumes from individual brain slices that are all acquired at the same point in time relative to a presented stimulus. These whole-brain volumes contain minimal temporal distortions, and are available at a high temporal resolution. In addition, statistical signal extraction occurred on the basis of a non-standard time point-by-time point approach. We evaluated the detection accuracy of the extracted signal in the standard and new framework with simulated and real-world fMRI data. The new slice-based data-analytic framework yields greatly improved signal detection accuracy of fMRI signals.

Journal

NeuroimageElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off