Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging... Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the “scavenger + promoter” strategy presented in this work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

Loading next page...
 
/lp/elsevier/improving-sio2-impurity-tolerance-of-ce0-8sm0-2o1-9-synergy-of-cao-and-HWFJq3LcOF
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.135
Publisher site
See Article on Publisher Site

Abstract

Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the “scavenger + promoter” strategy presented in this work.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off