Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing

Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto–regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing

Loading next page...
 
/lp/elsevier/improved-sulfide-mitigation-in-sewers-through-on-line-control-of-Ag54IJWVjP
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.022
Publisher site
See Article on Publisher Site

Abstract

Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto–regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%.

Journal

Water ResearchElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off