Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries

Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as... Various yolk-shell structured particles designed for large volume expansion materials for lithium-ion storage have been reported, the cycle stability and coulombic efficiency can be effectively improved through such structure design. SnO2 has high theoretical capacity of 1494 mA h g−1 and 1378 mA h g−1 for lithium and sodium storage, respectively. The large volume expansion problem of SnO2 has long been considered as the primary reason for the capacity fading of SnO2 based anode materials. In this paper, the yolk-shell structured SnO2 porous nanowire has been designed, and this unique yolk-shell structure is reported as anode materials for lithium and sodium-ion storage for the first time. The yolk-shell structured porous nanowires deliver significantly improved cycle stability and coulombic efficiency as active material for both lithium and sodium-ion storage compared with that of pure SnO2 porous nanowires. It exhibits a high and stable capacity of 1150 mA h g−1 at current density of 200 mA g−1 for lithium-ion storage, and a capacity of 401 mA h g−1 at current density of 50 mA g−1 after 50 cycles for sodium-ion storage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries

Loading next page...
 
/lp/elsevier/improved-electrochemical-performance-of-yolk-shell-structured-sno2-30xo3m7ZYl
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.06.011
Publisher site
See Article on Publisher Site

Abstract

Various yolk-shell structured particles designed for large volume expansion materials for lithium-ion storage have been reported, the cycle stability and coulombic efficiency can be effectively improved through such structure design. SnO2 has high theoretical capacity of 1494 mA h g−1 and 1378 mA h g−1 for lithium and sodium storage, respectively. The large volume expansion problem of SnO2 has long been considered as the primary reason for the capacity fading of SnO2 based anode materials. In this paper, the yolk-shell structured SnO2 porous nanowire has been designed, and this unique yolk-shell structure is reported as anode materials for lithium and sodium-ion storage for the first time. The yolk-shell structured porous nanowires deliver significantly improved cycle stability and coulombic efficiency as active material for both lithium and sodium-ion storage compared with that of pure SnO2 porous nanowires. It exhibits a high and stable capacity of 1150 mA h g−1 at current density of 200 mA g−1 for lithium-ion storage, and a capacity of 401 mA h g−1 at current density of 50 mA g−1 after 50 cycles for sodium-ion storage.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off