Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach

Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical... Accurate measurements of ground-level PM2.5 (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) concentrations are critically important to human and environmental health studies. In this regard, satellite-derived gridded PM2.5 datasets, particularly those datasets derived from chemical transport models (CTM), have demonstrated unique attractiveness in terms of their geographic and temporal coverage. The CTM-based approaches, however, often yield results with a coarse spatial resolution (typically at 0.1° of spatial resolution) and tend to ignore or simplify the impact of geographic and socioeconomic factors on PM2.5 concentrations. In this study, with a focus on the long-term PM2.5 distribution in the contiguous United States, we adopt a random forests-based geostatistical (regression kriging) approach to improve one of the most commonly used satellite-derived, gridded PM2.5 datasets with a refined spatial resolution (0.01°) and enhanced accuracy. By combining the random forests machine learning method and the kriging family of methods, the geostatistical approach effectively integrates ground-based PM2.5 measurements and related geographic variables while accounting for the non-linear interactions and the complex spatial dependence. The accuracy and advantages of the proposed approach are demonstrated by comparing the results with existing PM2.5 datasets. This manuscript also highlights the effectiveness of the geographical variables in long-term PM2.5 mapping, including brightness of nighttime lights, normalized difference vegetation index and elevation, and discusses the contribution of each of these variables to the spatial distribution of PM2.5 concentrations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach

Loading next page...
 
/lp/elsevier/improve-ground-level-pm2-5-concentration-mapping-using-a-random-MB8abHSmnE
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.070
Publisher site
See Article on Publisher Site

Abstract

Accurate measurements of ground-level PM2.5 (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) concentrations are critically important to human and environmental health studies. In this regard, satellite-derived gridded PM2.5 datasets, particularly those datasets derived from chemical transport models (CTM), have demonstrated unique attractiveness in terms of their geographic and temporal coverage. The CTM-based approaches, however, often yield results with a coarse spatial resolution (typically at 0.1° of spatial resolution) and tend to ignore or simplify the impact of geographic and socioeconomic factors on PM2.5 concentrations. In this study, with a focus on the long-term PM2.5 distribution in the contiguous United States, we adopt a random forests-based geostatistical (regression kriging) approach to improve one of the most commonly used satellite-derived, gridded PM2.5 datasets with a refined spatial resolution (0.01°) and enhanced accuracy. By combining the random forests machine learning method and the kriging family of methods, the geostatistical approach effectively integrates ground-based PM2.5 measurements and related geographic variables while accounting for the non-linear interactions and the complex spatial dependence. The accuracy and advantages of the proposed approach are demonstrated by comparing the results with existing PM2.5 datasets. This manuscript also highlights the effectiveness of the geographical variables in long-term PM2.5 mapping, including brightness of nighttime lights, normalized difference vegetation index and elevation, and discusses the contribution of each of these variables to the spatial distribution of PM2.5 concentrations.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off