Implications of drainage rearrangement for passive margin escarpment evolution in southern Brazil

Implications of drainage rearrangement for passive margin escarpment evolution in southern Brazil Although several authors have pointed out the importance of earth surface process to passive margin escarpments relief evolution and even drainage rearrangements, the dynamics of a consolidated capture area (after a drainage network erodes the escarpment, as the one from the Itajaí-Açu River) remain poorly understood. Here, results are presented from radar elevation and aerial imagery data coupled with in-situ-produced 10Be concentrations measured in sand-sized river-born sediments from the Serra Geral escarpment, southern Brazil. The Studied area's relief evolution is captained by the drainage network: while the Itajaí-Açu watershed relief is the most dissected and lowest in elevation, it is significantly less dissected in the intermediate elevation Iguaçu catchment, an important Paraná River tributary. These less dissected and topographically higher areas belong to the Uruguai River catchment. These differences are conditioned by (i) different lithology compositions, structures and genesis; (ii) different morphological configurations, notably slope, range, relief; and (iii) different regional base levels. Along the Serra Geral escarpment, drainage features such as elbows, underfitted valleys, river profile anomalies, and contrasts in mapped χ-values are evidence of the rearrangement process, mainly beheading, where ocean-facing tributaries of the Itajaí-Açu River capture the inland catchments (Iguaçu and Uruguai). The 10Be derived denudation rates reinforced such processes: while samples from the Caçador and Araucárias Plateaus yield weighted means of 3.1 ± 0.2 and 6.5 ± 0.4 m/Ma respectively, samples from along the escarpment yield a weighted mean of 46.8 ± 3.6 m/Ma, almost 8 times higher. Such significant denudation rate differences are explained by base-level control, relief characteristics, and the geology framework. The main regional morphological evolutionary mechanism is headward denudation and piracy by the Itajaí-Açu River tributaries. As the escarpment moves from east to west, Itajaí-Açu River tributaries develop, leading to regional relief lowering and area losses within the Iguaçu and Uruguai catchments. Such processes were accelerated since Itajaí-Açu tributaries reached into sedimentary and volcanic rocks. From this moment on, Serra Geral became the main hydrographic divide between the ocean- and inland facing-catchments in the area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Implications of drainage rearrangement for passive margin escarpment evolution in southern Brazil

Loading next page...
 
/lp/elsevier/implications-of-drainage-rearrangement-for-passive-margin-escarpment-0bjpmJun70
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2018.01.007
Publisher site
See Article on Publisher Site

Abstract

Although several authors have pointed out the importance of earth surface process to passive margin escarpments relief evolution and even drainage rearrangements, the dynamics of a consolidated capture area (after a drainage network erodes the escarpment, as the one from the Itajaí-Açu River) remain poorly understood. Here, results are presented from radar elevation and aerial imagery data coupled with in-situ-produced 10Be concentrations measured in sand-sized river-born sediments from the Serra Geral escarpment, southern Brazil. The Studied area's relief evolution is captained by the drainage network: while the Itajaí-Açu watershed relief is the most dissected and lowest in elevation, it is significantly less dissected in the intermediate elevation Iguaçu catchment, an important Paraná River tributary. These less dissected and topographically higher areas belong to the Uruguai River catchment. These differences are conditioned by (i) different lithology compositions, structures and genesis; (ii) different morphological configurations, notably slope, range, relief; and (iii) different regional base levels. Along the Serra Geral escarpment, drainage features such as elbows, underfitted valleys, river profile anomalies, and contrasts in mapped χ-values are evidence of the rearrangement process, mainly beheading, where ocean-facing tributaries of the Itajaí-Açu River capture the inland catchments (Iguaçu and Uruguai). The 10Be derived denudation rates reinforced such processes: while samples from the Caçador and Araucárias Plateaus yield weighted means of 3.1 ± 0.2 and 6.5 ± 0.4 m/Ma respectively, samples from along the escarpment yield a weighted mean of 46.8 ± 3.6 m/Ma, almost 8 times higher. Such significant denudation rate differences are explained by base-level control, relief characteristics, and the geology framework. The main regional morphological evolutionary mechanism is headward denudation and piracy by the Itajaí-Açu River tributaries. As the escarpment moves from east to west, Itajaí-Açu River tributaries develop, leading to regional relief lowering and area losses within the Iguaçu and Uruguai catchments. Such processes were accelerated since Itajaí-Açu tributaries reached into sedimentary and volcanic rocks. From this moment on, Serra Geral became the main hydrographic divide between the ocean- and inland facing-catchments in the area.

Journal

GeomorphologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off