Implementing structural equation models to observational data from feedlot production systems

Implementing structural equation models to observational data from feedlot production systems The objective of this study was to illustrate the implementation of a mixed-model-based structural equation modeling (SEM) approach to observational data in the context of feedlot production systems. Different from traditional multiple-trait models, SEMs allow assessment of potential causal interrelationships between outcomes and can effectively discriminate between direct and indirect effects. For illustration, we focused on feedlot performance and its relationship to health outcomes related to Bovine Respiratory Disease (BRD), which accounts for approximately 75% of morbidity and 50–80% of deaths in feedlots. Our data consisted of 1430 lots representing 178,983 cattle from 9 feedlot operations located across the US Great Plains. We explored functional links between arrival weight (AW; i = 1), BRD-related treatment costs (Trt$; as a proxy for health; i = 2) and average daily weight gain (ADG; as an indicator of productive performance i = 3), accounting for the fixed effect of sex and correlation patterns due to the clustering of lots within feedlots. We proposed competing plausible causal models based on expert knowledge. The best fitting model selected for inference supported direct effects of AW on ADG as well as indirect effects of AW on ADG mediated by Trt$. Direct effects from outcome i’ to outcome i are quantified by the structural coefficient λii', such that every unit increase in kg/head of AW had a direct effect of increasing ADG by approximately (estimate ± standard error) λˆ31=0.002±0.0001 kg/head/day and also a direct effect of reducing Trt$ by an estimated λˆ21=$0.08±0.006 USD per head. In addition, every $1 USD spent on Trt$ directly decreased ADG by an estimated λˆ32=0.004±0.0006 kg/head/day. From these estimates, we show how to compute the indirect, Trt$-mediated, effect of AW on ADG, as well as the overall effect of AW on ADG, including both direct and indirect effects. We further compared estimates of SEM-based effects with those obtained from standard linear regression mixed models and demonstrated the additional advantage of explicitly distinguishing direct and indirect components of an overall regression effect using SEMs. Understanding the direct and indirect mechanisms of interplay between health and performance outcomes may provide valuable insight into production systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Preventive Veterinary Medicine Elsevier

Implementing structural equation models to observational data from feedlot production systems

Loading next page...
 
/lp/elsevier/implementing-structural-equation-models-to-observational-data-from-bbmzGNydl0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0167-5877
eISSN
1873-1716
D.O.I.
10.1016/j.prevetmed.2017.09.002
Publisher site
See Article on Publisher Site

Abstract

The objective of this study was to illustrate the implementation of a mixed-model-based structural equation modeling (SEM) approach to observational data in the context of feedlot production systems. Different from traditional multiple-trait models, SEMs allow assessment of potential causal interrelationships between outcomes and can effectively discriminate between direct and indirect effects. For illustration, we focused on feedlot performance and its relationship to health outcomes related to Bovine Respiratory Disease (BRD), which accounts for approximately 75% of morbidity and 50–80% of deaths in feedlots. Our data consisted of 1430 lots representing 178,983 cattle from 9 feedlot operations located across the US Great Plains. We explored functional links between arrival weight (AW; i = 1), BRD-related treatment costs (Trt$; as a proxy for health; i = 2) and average daily weight gain (ADG; as an indicator of productive performance i = 3), accounting for the fixed effect of sex and correlation patterns due to the clustering of lots within feedlots. We proposed competing plausible causal models based on expert knowledge. The best fitting model selected for inference supported direct effects of AW on ADG as well as indirect effects of AW on ADG mediated by Trt$. Direct effects from outcome i’ to outcome i are quantified by the structural coefficient λii', such that every unit increase in kg/head of AW had a direct effect of increasing ADG by approximately (estimate ± standard error) λˆ31=0.002±0.0001 kg/head/day and also a direct effect of reducing Trt$ by an estimated λˆ21=$0.08±0.006 USD per head. In addition, every $1 USD spent on Trt$ directly decreased ADG by an estimated λˆ32=0.004±0.0006 kg/head/day. From these estimates, we show how to compute the indirect, Trt$-mediated, effect of AW on ADG, as well as the overall effect of AW on ADG, including both direct and indirect effects. We further compared estimates of SEM-based effects with those obtained from standard linear regression mixed models and demonstrated the additional advantage of explicitly distinguishing direct and indirect components of an overall regression effect using SEMs. Understanding the direct and indirect mechanisms of interplay between health and performance outcomes may provide valuable insight into production systems.

Journal

Preventive Veterinary MedicineElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off