Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber

Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a... Diesel engine performance and emissions are closely related to fuel atomization and spray processes, which in turn are strongly influenced by nozzle geometry. In this study, five kinds of single-hole cylindrical injectors which have different orifice diameters (0.13–0.23mm) and lengths (0.7–1.0mm) were employed to research the effects of the nozzle geometry on spray droplet size distribution and corresponding combustion characteristics. The spray droplet size spatial distribution was measured with the Phase Doppler Particle Analyzer (PDPA). The results show that the Sauter Mean Diameter (SMD) reduces with the increase of the distance from injector tip and the SMD of the central axis is bigger than that of the periphery. With the increase of the injection pressure (40–120MPa), the spray SMD decreases significantly. In addition, as the orifice diameter goes smaller, the SMD decreases and the effect of the orifice diameter on the spray SMD becomes weak. Meanwhile, as the orifice length goes longer, the SMD decreases when the orifice diameter is 0.13mm. And then, the combustion characteristics were experimentally investigated in a constant volume chamber with optical access. Time-resolved images of the natural luminosities (indicator of soot) from the combustion process were captured by high speed camera and combustion pressure was also acquired. It is found that there is a good corresponding relationship between spray SMD, combustion heat release rate and flame luminosity. That is to say, the way to decrease SMD reduces greatly the natural luminosities and improves combustion heat release rate. This article presents the effects of nozzle geometry on droplet size distribution and combustion, and provides important references for injector manufacture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber

Loading next page...
 
/lp/elsevier/impacts-of-nozzle-geometry-on-spray-combustion-of-high-pressure-common-rgFIBj0OKg
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2016.03.097
Publisher site
See Article on Publisher Site

Abstract

Diesel engine performance and emissions are closely related to fuel atomization and spray processes, which in turn are strongly influenced by nozzle geometry. In this study, five kinds of single-hole cylindrical injectors which have different orifice diameters (0.13–0.23mm) and lengths (0.7–1.0mm) were employed to research the effects of the nozzle geometry on spray droplet size distribution and corresponding combustion characteristics. The spray droplet size spatial distribution was measured with the Phase Doppler Particle Analyzer (PDPA). The results show that the Sauter Mean Diameter (SMD) reduces with the increase of the distance from injector tip and the SMD of the central axis is bigger than that of the periphery. With the increase of the injection pressure (40–120MPa), the spray SMD decreases significantly. In addition, as the orifice diameter goes smaller, the SMD decreases and the effect of the orifice diameter on the spray SMD becomes weak. Meanwhile, as the orifice length goes longer, the SMD decreases when the orifice diameter is 0.13mm. And then, the combustion characteristics were experimentally investigated in a constant volume chamber with optical access. Time-resolved images of the natural luminosities (indicator of soot) from the combustion process were captured by high speed camera and combustion pressure was also acquired. It is found that there is a good corresponding relationship between spray SMD, combustion heat release rate and flame luminosity. That is to say, the way to decrease SMD reduces greatly the natural luminosities and improves combustion heat release rate. This article presents the effects of nozzle geometry on droplet size distribution and combustion, and provides important references for injector manufacture.

Journal

FuelElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off