Impacts of natural emission sources on particle pollution levels in Europe

Impacts of natural emission sources on particle pollution levels in Europe The main objective of this work is the study of the impact of windblown dust, sea-salt aerosol and biogenic emissions on particle pollution levels in Europe. The Natural Emissions MOdel (NEMO) and the modelling system consisted of the Weather Research and Forecasting model (WRF) and the Comprehensive Air Quality model with extensions (CAMx) were applied in a 30 km horizontal resolution grid, which covered Europe and the adjacent areas for the year 2009. Air quality simulations were performed for different emission scenarios in order to study the contribution of each natural emission source individually and together to air quality levels in Europe. The simulations reveal that the exclusion of windblown dust emissions decreases the mean seasonal PM10 levels by more than 3.3 μg/m3 (∼20%) in the Eastern Mediterranean during winter while an impact of 3 μg/m3 was also found during summer. The results suggest that sea-salt aerosol has a significant effect on PM levels and composition. Eliminating sea-salt emissions reduces PM10 seasonal concentrations by around 10 μg/m3 in Mediterranean Sea during summer while a decrease of up to 6 μg/m3 is found in Atlantic Ocean during autumn. Sea-salt particles also interact with the anthropogenic component and therefore their absence in the atmosphere decreases significantly the nitrates in aerosols where shipping activities are present. The exclusion of biogenic emissions in the model runs leads to a significant reduction of secondary organic aerosols of more than 90% while an increase in PM2.5 levels in central Europe and Eastern Mediterranean is found due to their interaction with anthropogenic component. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

Impacts of natural emission sources on particle pollution levels in Europe

Loading next page...
 
/lp/elsevier/impacts-of-natural-emission-sources-on-particle-pollution-levels-in-doJK00Buqh
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/j.atmosenv.2016.04.040
Publisher site
See Article on Publisher Site

Abstract

The main objective of this work is the study of the impact of windblown dust, sea-salt aerosol and biogenic emissions on particle pollution levels in Europe. The Natural Emissions MOdel (NEMO) and the modelling system consisted of the Weather Research and Forecasting model (WRF) and the Comprehensive Air Quality model with extensions (CAMx) were applied in a 30 km horizontal resolution grid, which covered Europe and the adjacent areas for the year 2009. Air quality simulations were performed for different emission scenarios in order to study the contribution of each natural emission source individually and together to air quality levels in Europe. The simulations reveal that the exclusion of windblown dust emissions decreases the mean seasonal PM10 levels by more than 3.3 μg/m3 (∼20%) in the Eastern Mediterranean during winter while an impact of 3 μg/m3 was also found during summer. The results suggest that sea-salt aerosol has a significant effect on PM levels and composition. Eliminating sea-salt emissions reduces PM10 seasonal concentrations by around 10 μg/m3 in Mediterranean Sea during summer while a decrease of up to 6 μg/m3 is found in Atlantic Ocean during autumn. Sea-salt particles also interact with the anthropogenic component and therefore their absence in the atmosphere decreases significantly the nitrates in aerosols where shipping activities are present. The exclusion of biogenic emissions in the model runs leads to a significant reduction of secondary organic aerosols of more than 90% while an increase in PM2.5 levels in central Europe and Eastern Mediterranean is found due to their interaction with anthropogenic component.

Journal

Atmospheric EnvironmentElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off