Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida

Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A... Renewable energy sources continue to attract attention in all parts of the world. Photovoltaic solar energy plants rapidly grow and become prevalent. They are now used for large-scale power plants rather than small- ones. The inverter type to be used in large-scale power plants has always been debated in the academic community. The performances of these power plants are affected by inverter types and losses. This study focuses on the impact of inverter capacity on the performance of large-scale photovoltaic power plants. The performance of different inverter types were analyzed via various measurement and simulation methods. The measurement results obtained from 43 active photovoltaic power plants in Gainesville, Florida (29° 39′ 00″, −82° 19′ 14″) and 39 simulation results obtained thanks to Pvsyst (demo) software were used to analyze the impact of inverter capacity on the performance in detail. The findings demonstrate that string inverter produces more energy by 4.09% compared to micro inverter; that central inverter produces more energy by 5.45% compared to micro inverter, and that central inverter, again, produces more energy by 1.3% compared to string inverter. In addition, it was observed that the loss in string inverter is less by 43.93% compared to micro inverter; that the loss in central inverter is less by 60.4% compared to micro inverter; and that the loss in central inverter, again, is less by 29.37% compared to string inverter. Therefore, it can be stated that micro inverters produce less amounts of energy and cause more losses; that string inverters produce medium amounts of energy and causes medium losses; and that central inverters produce the highest amount of energy and causes the least amount of losses. Thus, the use of high capacity inverters contributes positively to the performance of large-scale power plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida

Loading next page...
 
/lp/elsevier/impact-of-inverter-capacity-on-the-performance-in-large-scale-727kvEbXnS
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.054
Publisher site
See Article on Publisher Site

Abstract

Renewable energy sources continue to attract attention in all parts of the world. Photovoltaic solar energy plants rapidly grow and become prevalent. They are now used for large-scale power plants rather than small- ones. The inverter type to be used in large-scale power plants has always been debated in the academic community. The performances of these power plants are affected by inverter types and losses. This study focuses on the impact of inverter capacity on the performance of large-scale photovoltaic power plants. The performance of different inverter types were analyzed via various measurement and simulation methods. The measurement results obtained from 43 active photovoltaic power plants in Gainesville, Florida (29° 39′ 00″, −82° 19′ 14″) and 39 simulation results obtained thanks to Pvsyst (demo) software were used to analyze the impact of inverter capacity on the performance in detail. The findings demonstrate that string inverter produces more energy by 4.09% compared to micro inverter; that central inverter produces more energy by 5.45% compared to micro inverter, and that central inverter, again, produces more energy by 1.3% compared to string inverter. In addition, it was observed that the loss in string inverter is less by 43.93% compared to micro inverter; that the loss in central inverter is less by 60.4% compared to micro inverter; and that the loss in central inverter, again, is less by 29.37% compared to string inverter. Therefore, it can be stated that micro inverters produce less amounts of energy and cause more losses; that string inverters produce medium amounts of energy and causes medium losses; and that central inverters produce the highest amount of energy and causes the least amount of losses. Thus, the use of high capacity inverters contributes positively to the performance of large-scale power plants.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off