Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate

Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone... The present study examined the cytotoxicity, anti-cancer reactivity, and immunomodulatory properties of new synthetically prepared fluoroquinolone derivative 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (6FN) in vitro. The cytotoxicity/toxicity studies (concentrations in the range 1–100μM) are focused on the cervical cancer cells HeLa, murine melanoma cancer cells B16, non-cancer fibroblast NIH-3T3 cells and reconstructed human epidermis tissues EpiDerm™. The significant growth inhibition of cancer cells HeLa and B16 was detected. The cytotoxicity was mediated via apoptosis-associated with activation of caspase-9 and -3. After 72h of treatment, the two highest 6FN concentrations (100 and 50μM) induced toxic effect on epidermis tissue EpiDerm™, even the structural changes in tissue were observed with concentration of 100μM. The effective induction of RAW 264.7 macrophages cell-release of pro- and anti-inflammatory TH1, TH2 and TH17 cytokines, with anti-cancer and/or anti-infection activities, respectively, has been revealed even following low-dose exposition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunobiology Elsevier

Immunobiological efficacy and immunotoxicity of novel synthetically prepared fluoroquinolone ethyl 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate

Loading next page...
 
/lp/elsevier/immunobiological-efficacy-and-immunotoxicity-of-novel-synthetically-isw5zDWYRI
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier GmbH
ISSN
0171-2985
eISSN
1878-3279
D.O.I.
10.1016/j.imbio.2017.10.008
Publisher site
See Article on Publisher Site

Abstract

The present study examined the cytotoxicity, anti-cancer reactivity, and immunomodulatory properties of new synthetically prepared fluoroquinolone derivative 6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (6FN) in vitro. The cytotoxicity/toxicity studies (concentrations in the range 1–100μM) are focused on the cervical cancer cells HeLa, murine melanoma cancer cells B16, non-cancer fibroblast NIH-3T3 cells and reconstructed human epidermis tissues EpiDerm™. The significant growth inhibition of cancer cells HeLa and B16 was detected. The cytotoxicity was mediated via apoptosis-associated with activation of caspase-9 and -3. After 72h of treatment, the two highest 6FN concentrations (100 and 50μM) induced toxic effect on epidermis tissue EpiDerm™, even the structural changes in tissue were observed with concentration of 100μM. The effective induction of RAW 264.7 macrophages cell-release of pro- and anti-inflammatory TH1, TH2 and TH17 cytokines, with anti-cancer and/or anti-infection activities, respectively, has been revealed even following low-dose exposition.

Journal

ImmunobiologyElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off