Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility

Identification of the reaction mechanism between phenyl methacrylate and epoxy and its... NORYL™ SA9000 resin is a commercialized telechelic PPO oligomer with phenyl methacrylate end groups. However, neat SA9000 thermoset is brittle after thermally curing. To find a method to enhance the toughness of neat SA9000 thermoset, three model reactions are designed. The first one is the 4-dimethylaminopyridine (DMAP)-catalyzed homopolymerization of glycidyl phenyl ether. The second one is the reaction of glycidyl phenyl ether and phenyl acetate in the presence of DMAP. The third one is the reaction of glycidyl phenyl ether and phenyl methacrylate in the presence DMAP. Through 1H NMR analysis, the product is 1,3-diphenoxy-2-acetoxypropane and 1,3-diphenoxy-2-methacryalatepropane, respectively, for model reactions 2 and 3. According to the structure of products, we identify the reaction mechanisms between the phenyl acetate and epoxy, and between the phenyl methacrylate and epoxy. Based on the knowledge, we used two commercialized epoxy resin (DGEBA and HP7200) to copolymerize with SA9000 in the presence of DMAP and tert-butyl cumyl peroxide (TBCP). The toughness of the thermosets are significantly improved, which means the brittle drawback of neat SA9000 thermoset has been solved. Homogeneous, flexible thermosetting films with high glass transition temperatures, low dielectric constants, and extremely low dissipation factors are obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Elsevier

Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility

Loading next page...
 
/lp/elsevier/identification-of-the-reaction-mechanism-between-phenyl-methacrylate-bh0ja0j9s2
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0032-3861
D.O.I.
10.1016/j.polymer.2018.02.045
Publisher site
See Article on Publisher Site

Abstract

NORYL™ SA9000 resin is a commercialized telechelic PPO oligomer with phenyl methacrylate end groups. However, neat SA9000 thermoset is brittle after thermally curing. To find a method to enhance the toughness of neat SA9000 thermoset, three model reactions are designed. The first one is the 4-dimethylaminopyridine (DMAP)-catalyzed homopolymerization of glycidyl phenyl ether. The second one is the reaction of glycidyl phenyl ether and phenyl acetate in the presence of DMAP. The third one is the reaction of glycidyl phenyl ether and phenyl methacrylate in the presence DMAP. Through 1H NMR analysis, the product is 1,3-diphenoxy-2-acetoxypropane and 1,3-diphenoxy-2-methacryalatepropane, respectively, for model reactions 2 and 3. According to the structure of products, we identify the reaction mechanisms between the phenyl acetate and epoxy, and between the phenyl methacrylate and epoxy. Based on the knowledge, we used two commercialized epoxy resin (DGEBA and HP7200) to copolymerize with SA9000 in the presence of DMAP and tert-butyl cumyl peroxide (TBCP). The toughness of the thermosets are significantly improved, which means the brittle drawback of neat SA9000 thermoset has been solved. Homogeneous, flexible thermosetting films with high glass transition temperatures, low dielectric constants, and extremely low dissipation factors are obtained.

Journal

PolymerElsevier

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial