I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates

I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic... The I-Xe system was studied in a ferromagnetic sample separated from the Orgueil CI carbonaceous chondrite with a hand-held magnet and in two magnetite samples, one chemically separated before and the other one after neutron irradiation. This work was done in order to investigate the effects of chemical separation by LiCl and NaOH on the I-Xe system in magnetite. Our test demonstrated that the chemical separation of magnetite before irradiation using either LiCl or NaOH, or both, does not contaminate the sample with iodine and thus cannot lead to erroneous I-Xe ages due to introduction of uncorrelated 128∗Xe.The I-Xe ages of two Orgueil magnetite samples are mutually consistent within experimental uncertainties and, when normalized to an absolute time scale with the reevaluated Shallowater aubrite standard, place the onset of aqueous alteration on the CI parent body at 4564.3 ± 0.3 Ma, 2.9 ± 0.3 Ma after formation of the CV Ca-AI-rich inclusions (CAIs). The I-Xe age of the ferromagnetic Orgueil separate is 3.4 Ma younger, corresponding to a closure of the I-Xe system at 4560.9 ± 0.2 Ma. These and previously published I-Xe data for Orgueil (Hohenberg et al., 2000) indicate that aqueous alteration on the CI parent body lasted for at least 5 Ma.Although the two magnetite samples gave indistinguishable I-Xe ages, their temperature release profiles differed. One of the two Orgueil magnetites released less radiogenic Xe than the other, 80% of it corresponding to the low-temperature peak of the release profile, compared to only 6% in case of the second Orgueil magnetite sample. This could be due to the difference in iodine trapping efficiencies for magnetite grains of different morphologies. Alternatively, the magnetite grains with the lower radiogenic Xe concentrations may have formed at a later stage of alteration when iodine in an aqueous solution was depleted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

I-Xe dating of aqueous alteration in the CI chondrite Orgueil: I. Magnetite and ferromagnetic separates

Loading next page...
 
/lp/elsevier/i-xe-dating-of-aqueous-alteration-in-the-ci-chondrite-orgueil-i-7j1BaDjbcj
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2018.02.004
Publisher site
See Article on Publisher Site

Abstract

The I-Xe system was studied in a ferromagnetic sample separated from the Orgueil CI carbonaceous chondrite with a hand-held magnet and in two magnetite samples, one chemically separated before and the other one after neutron irradiation. This work was done in order to investigate the effects of chemical separation by LiCl and NaOH on the I-Xe system in magnetite. Our test demonstrated that the chemical separation of magnetite before irradiation using either LiCl or NaOH, or both, does not contaminate the sample with iodine and thus cannot lead to erroneous I-Xe ages due to introduction of uncorrelated 128∗Xe.The I-Xe ages of two Orgueil magnetite samples are mutually consistent within experimental uncertainties and, when normalized to an absolute time scale with the reevaluated Shallowater aubrite standard, place the onset of aqueous alteration on the CI parent body at 4564.3 ± 0.3 Ma, 2.9 ± 0.3 Ma after formation of the CV Ca-AI-rich inclusions (CAIs). The I-Xe age of the ferromagnetic Orgueil separate is 3.4 Ma younger, corresponding to a closure of the I-Xe system at 4560.9 ± 0.2 Ma. These and previously published I-Xe data for Orgueil (Hohenberg et al., 2000) indicate that aqueous alteration on the CI parent body lasted for at least 5 Ma.Although the two magnetite samples gave indistinguishable I-Xe ages, their temperature release profiles differed. One of the two Orgueil magnetites released less radiogenic Xe than the other, 80% of it corresponding to the low-temperature peak of the release profile, compared to only 6% in case of the second Orgueil magnetite sample. This could be due to the difference in iodine trapping efficiencies for magnetite grains of different morphologies. Alternatively, the magnetite grains with the lower radiogenic Xe concentrations may have formed at a later stage of alteration when iodine in an aqueous solution was depleted.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off