Hypoglycosylation due to dolichol metabolism defects

Hypoglycosylation due to dolichol metabolism defects Dolichol phosphate is a lipid carrier embedded in the endoplasmic reticulum (ER) membrane essential for the synthesis of N-glycans, GPI-anchors and protein C- and O-mannosylation. The availability of dolichol phosphate on the cytosolic site of the ER is rate-limiting for N-glycosylation. The abundance of dolichol phosphate is influenced by its de novo synthesis and the recycling of dolichol phosphate from the luminal leaflet to the cytosolic leaflet of the ER. Enzymatic defects affecting the de novo synthesis and the recycling of dolichol phosphate result in glycosylation defects in yeast or cell culture models, and are expected to cause glycosylation disorders in humans termed congenital disorders of glycosylation (CDG). Currently only one disorder affecting the dolichol phosphate metabolism has been described. In CDG-Im, the final step of the de novo synthesis of dolichol phosphate catalyzed by the enzyme dolichol kinase is affected. The defect causes a severe phenotype with death in early infancy. The present review summarizes the biosynthesis of dolichol-phosphate and the recycling pathway with respect to possible defects of the dolichol phosphate metabolism causing glycosylation defects in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Elsevier

Loading next page...
 
/lp/elsevier/hypoglycosylation-due-to-dolichol-metabolism-defects-BgEoylVR07
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier B.V.
ISSN
0925-4439
DOI
10.1016/j.bbadis.2009.01.013
pmid
19419701
Publisher site
See Article on Publisher Site

Abstract

Dolichol phosphate is a lipid carrier embedded in the endoplasmic reticulum (ER) membrane essential for the synthesis of N-glycans, GPI-anchors and protein C- and O-mannosylation. The availability of dolichol phosphate on the cytosolic site of the ER is rate-limiting for N-glycosylation. The abundance of dolichol phosphate is influenced by its de novo synthesis and the recycling of dolichol phosphate from the luminal leaflet to the cytosolic leaflet of the ER. Enzymatic defects affecting the de novo synthesis and the recycling of dolichol phosphate result in glycosylation defects in yeast or cell culture models, and are expected to cause glycosylation disorders in humans termed congenital disorders of glycosylation (CDG). Currently only one disorder affecting the dolichol phosphate metabolism has been described. In CDG-Im, the final step of the de novo synthesis of dolichol phosphate catalyzed by the enzyme dolichol kinase is affected. The defect causes a severe phenotype with death in early infancy. The present review summarizes the biosynthesis of dolichol-phosphate and the recycling pathway with respect to possible defects of the dolichol phosphate metabolism causing glycosylation defects in humans.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Basis of DiseaseElsevier

Published: Sep 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off