Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins

Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins Nowadays, the detection of fruit infected with Penicillium sp. fungi on packing lines is carried out manually under ultraviolet illumination. Ultraviolet sources induce visible fluorescence of essential oils, present in the skin of citrus and which are released by the action of fungi, thus increasing the contrast between sound and rotten skin. This work analyses a set of techniques aimed at detecting rotten citrus without the use of UV lighting. The techniques used include hyperspectral image acquisition, pre-processing and calibration, feature selection and segmentation using linear and non-linear methods for classification of fruits. Different methods such as correlation analysis, mutual information, stepwise, and genetic algorithms based on linear discriminant analysis (LDA) are studied to select the most relevant bands. Image segmentation relies on the combination of efficient band selection techniques and also on pixel classification methods such as classification and regression trees (CART) and LDA. The results were obtained using a large dataset of images of mandarins cv. “Clemenules” by applying the CART method. The hyperspectral computer vision system proposed here is capable of detecting damage caused by Penicillium digitatum in mandarins using a reduced set of optimally selected bands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins

Loading next page...
 
/lp/elsevier/hyperspectral-system-for-early-detection-of-rottenness-caused-by-0eorhvMttV
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2008.04.009
Publisher site
See Article on Publisher Site

Abstract

Nowadays, the detection of fruit infected with Penicillium sp. fungi on packing lines is carried out manually under ultraviolet illumination. Ultraviolet sources induce visible fluorescence of essential oils, present in the skin of citrus and which are released by the action of fungi, thus increasing the contrast between sound and rotten skin. This work analyses a set of techniques aimed at detecting rotten citrus without the use of UV lighting. The techniques used include hyperspectral image acquisition, pre-processing and calibration, feature selection and segmentation using linear and non-linear methods for classification of fruits. Different methods such as correlation analysis, mutual information, stepwise, and genetic algorithms based on linear discriminant analysis (LDA) are studied to select the most relevant bands. Image segmentation relies on the combination of efficient band selection techniques and also on pixel classification methods such as classification and regression trees (CART) and LDA. The results were obtained using a large dataset of images of mandarins cv. “Clemenules” by applying the CART method. The hyperspectral computer vision system proposed here is capable of detecting damage caused by Penicillium digitatum in mandarins using a reduced set of optimally selected bands.

Journal

Journal of Food EngineeringElsevier

Published: Nov 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off