Hydrodynamic modelling of marine renewable energy devices: A state of the art review

Hydrodynamic modelling of marine renewable energy devices: A state of the art review This paper reviews key issues in the physical and numerical modelling of marine renewable energy systems, including wave energy devices, current turbines, and offshore wind turbines. The paper starts with an overview of the types of devices considered, and introduces some key studies in marine renewable energy modelling research. The development of new International Towing Tank Conference (ITTC) guidelines for model testing these devices is placed in the context of guidelines developed or under development by other international bodies as well as via research projects. Some particular challenges are introduced in the experimental and numerical modelling and testing of these devices, including the simulation of Power-Take-Off systems (PTOs) for physical models of all devices, approaches for numerical modelling of devices, and the correct modelling of wind load on offshore wind turbines. Finally, issues related to the uncertainty in performance prediction from model test results are discussed.The paper is based on the report of the International Towing Tank Conference specialist committee on Hydrodynamic Modelling of Marine Renewable Energy Devices to the 27th ITTC held in Copenhagen, Denmark in 2014 (ITTC Specialist Committee on Hydrodynamic Modelling of Marine Renewable Energy Devices, 2014a. Final Report and Recommendations to the 27th ITTC Proc. 27th International Towing Tank Conference, Copehagen, Denmark, vol. 2, pp. 680–725). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Hydrodynamic modelling of marine renewable energy devices: A state of the art review

Loading next page...
 
/lp/elsevier/hydrodynamic-modelling-of-marine-renewable-energy-devices-a-state-of-Y5WX7kdhpV
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2015.05.036
Publisher site
See Article on Publisher Site

Abstract

This paper reviews key issues in the physical and numerical modelling of marine renewable energy systems, including wave energy devices, current turbines, and offshore wind turbines. The paper starts with an overview of the types of devices considered, and introduces some key studies in marine renewable energy modelling research. The development of new International Towing Tank Conference (ITTC) guidelines for model testing these devices is placed in the context of guidelines developed or under development by other international bodies as well as via research projects. Some particular challenges are introduced in the experimental and numerical modelling and testing of these devices, including the simulation of Power-Take-Off systems (PTOs) for physical models of all devices, approaches for numerical modelling of devices, and the correct modelling of wind load on offshore wind turbines. Finally, issues related to the uncertainty in performance prediction from model test results are discussed.The paper is based on the report of the International Towing Tank Conference specialist committee on Hydrodynamic Modelling of Marine Renewable Energy Devices to the 27th ITTC held in Copenhagen, Denmark in 2014 (ITTC Specialist Committee on Hydrodynamic Modelling of Marine Renewable Energy Devices, 2014a. Final Report and Recommendations to the 27th ITTC Proc. 27th International Towing Tank Conference, Copehagen, Denmark, vol. 2, pp. 680–725).

Journal

Ocean EngineeringElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off