Hydrodynamic conditioning of diversity and functional traits in subtidal estuarine macrozoobenthic communities

Hydrodynamic conditioning of diversity and functional traits in subtidal estuarine... Variations in abundance and diversity of estuarine benthic macrofauna are typically described along the salinity gradient. The influence of gradients in water depth, hydrodynamic energy and sediment properties are less well known. We studied how these variables influence the distribution of subtidal macrofauna in the polyhaline zone of a temperate estuary (Westerschelde, SW Netherlands). Macrofauna density, biomass and species richness, combined in a so-called ecological richness, decreased with current velocities and median grain-size and increased with organic carbon of the sediment, in total explaining 39% of the variation. The macrofauna community composition was less well explained by the three environmental variables (approx. 12–15% in total, with current velocity explaining approx. 8%). Salinity, water depth and distance to the intertidal zone had a very limited effect on both ecological richness and the macrofauna community. The proportion of (surface) deposit feeders (including opportunistic species), decreased relative to that of omnivores and carnivores with increasing current velocity and sediment grain-size. In parallel, the proportion of burrowing sessile benthic species decreased relative to that of mobile benthic species that are able to swim. Correspondingly, spatial variations in hydrodynamics yielded distinct hotspots and coldspots in ecological richness. The findings highlight the importance of local hydrodynamic conditions for estuarine restoration and conservation. The study provides a tool based on a hydrodynamic model to assess and predict ecological richness in estuaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuarine Coastal and Shelf Science Elsevier

Hydrodynamic conditioning of diversity and functional traits in subtidal estuarine macrozoobenthic communities

Loading next page...
 
/lp/elsevier/hydrodynamic-conditioning-of-diversity-and-functional-traits-in-7fp4jbD9O1
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0272-7714
eISSN
1096-0015
D.O.I.
10.1016/j.ecss.2017.08.012
Publisher site
See Article on Publisher Site

Abstract

Variations in abundance and diversity of estuarine benthic macrofauna are typically described along the salinity gradient. The influence of gradients in water depth, hydrodynamic energy and sediment properties are less well known. We studied how these variables influence the distribution of subtidal macrofauna in the polyhaline zone of a temperate estuary (Westerschelde, SW Netherlands). Macrofauna density, biomass and species richness, combined in a so-called ecological richness, decreased with current velocities and median grain-size and increased with organic carbon of the sediment, in total explaining 39% of the variation. The macrofauna community composition was less well explained by the three environmental variables (approx. 12–15% in total, with current velocity explaining approx. 8%). Salinity, water depth and distance to the intertidal zone had a very limited effect on both ecological richness and the macrofauna community. The proportion of (surface) deposit feeders (including opportunistic species), decreased relative to that of omnivores and carnivores with increasing current velocity and sediment grain-size. In parallel, the proportion of burrowing sessile benthic species decreased relative to that of mobile benthic species that are able to swim. Correspondingly, spatial variations in hydrodynamics yielded distinct hotspots and coldspots in ecological richness. The findings highlight the importance of local hydrodynamic conditions for estuarine restoration and conservation. The study provides a tool based on a hydrodynamic model to assess and predict ecological richness in estuaries.

Journal

Estuarine Coastal and Shelf ScienceElsevier

Published: Oct 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off