Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity

Humic acids decrease uptake and distribution of trace metals, but not the growth of radish... Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0–225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity

Loading next page...
 
/lp/elsevier/humic-acids-decrease-uptake-and-distribution-of-trace-metals-but-not-B5awdE34T0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.12.055
Publisher site
See Article on Publisher Site

Abstract

Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0–225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off