Human single chain monoclonal antibody that recognizes matrix protein of heterologous influenza A virus subtypes

Human single chain monoclonal antibody that recognizes matrix protein of heterologous influenza A... Matrix protein (M1) is predominant and has pivotal role in the influenza A virus replication and assembly. It is therefore an attractive target for antiviral drugs, siRNA studies, and therapeutic antibodies. Nevertheless, therapeutic antibody that interferes with the M1 multiplex function has never been developed. In this study, human single monoclonal antibody fragments (HuScFvs) to M1 were generated. Full length recombinant M1 (rM1) was produced from cDNA prepared from genome of highly pathogenic avian influenza virus, A/H5N1. The rM1 was used as an antigen in phage bio-panning to select phage clones displaying HuScFv from a human antibody phage display library. Several phage clones displaying HuScFv bound to the rM1 and harboring the respective huscfv gene inserts were isolated. RFLP experiments revealed multiple DNA banding patterns which indicated epitope/affinity diversity of the HuScFv. The HuScFv were tested for their binding to native M1 of homologous and heterologous influenza A viruses using ELISA as well as incorporating immunostaining and immunofluorescence studies with infected MDCK cells. One such protein produced from a selected phage clone blocked binding of M1 to viral RNA. The HuScFv in their in vivo functional format, e.g. cell-penetrating molecules, should be developed and tested as a broad spectrum anti-A/influenza. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Virological Methods Elsevier

Human single chain monoclonal antibody that recognizes matrix protein of heterologous influenza A virus subtypes

Loading next page...
 
/lp/elsevier/human-single-chain-monoclonal-antibody-that-recognizes-matrix-protein-DjNvjII8eB
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier B.V.
ISSN
0166-0934
eISSN
1879-0984
D.O.I.
10.1016/j.jviromet.2009.03.010
Publisher site
See Article on Publisher Site

Abstract

Matrix protein (M1) is predominant and has pivotal role in the influenza A virus replication and assembly. It is therefore an attractive target for antiviral drugs, siRNA studies, and therapeutic antibodies. Nevertheless, therapeutic antibody that interferes with the M1 multiplex function has never been developed. In this study, human single monoclonal antibody fragments (HuScFvs) to M1 were generated. Full length recombinant M1 (rM1) was produced from cDNA prepared from genome of highly pathogenic avian influenza virus, A/H5N1. The rM1 was used as an antigen in phage bio-panning to select phage clones displaying HuScFv from a human antibody phage display library. Several phage clones displaying HuScFv bound to the rM1 and harboring the respective huscfv gene inserts were isolated. RFLP experiments revealed multiple DNA banding patterns which indicated epitope/affinity diversity of the HuScFv. The HuScFv were tested for their binding to native M1 of homologous and heterologous influenza A viruses using ELISA as well as incorporating immunostaining and immunofluorescence studies with infected MDCK cells. One such protein produced from a selected phage clone blocked binding of M1 to viral RNA. The HuScFv in their in vivo functional format, e.g. cell-penetrating molecules, should be developed and tested as a broad spectrum anti-A/influenza.

Journal

Journal of Virological MethodsElsevier

Published: Jul 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off