Human in-vivo brain magnetic resonance current density imaging (MRCDI)

Human in-vivo brain magnetic resonance current density imaging (MRCDI) Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal is modulated by these shifts, allowing to determine ΔBz,c for the reconstruction of the current flow and ohmic conductivity.Here, we demonstrate reliable ΔBz,c measurements in-vivo in the human brain based on multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. In a series of experiments, we optimize their robustness for in-vivo measurements while maintaining a good sensitivity to the current-induced fields. We validate both methods by assessing the linearity of the measured ΔBz,c with respect to the current strength. For the more efficient SSFP-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings of ΔBz,c fields as weak as 1 nT, caused by currents of 1 mA strength. Comparison of the ΔBz,c measurements with simulated ΔBz,c images based on FEM calculations and individualized head models reveals significant linear correlations in all subjects, but only for the stray field-corrected data. As final step, we reconstruct current density distributions from the measured and simulated ΔBz,c data. Reconstructions from non-corrected ΔBz,c measurements systematically overestimate the current densities. Comparing the current densities reconstructed from corrected ΔBz,c measurements and from simulated ΔBz,c images reveals an average coefficient of determination R2 of 71%. In addition, it shows that the simulations underestimated the current strength on average by 24%.Our results open up the possibility of using MRI to systematically validate and optimize numerical field simulations that play an important role in several neuroscience applications, such as transcranial brain stimulation, and electro- and magnetoencephalography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Human in-vivo brain magnetic resonance current density imaging (MRCDI)

Loading next page...
 
/lp/elsevier/human-in-vivo-brain-magnetic-resonance-current-density-imaging-mrcdi-VOJ9utgYNK
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.075
Publisher site
See Article on Publisher Site

Abstract

Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal is modulated by these shifts, allowing to determine ΔBz,c for the reconstruction of the current flow and ohmic conductivity.Here, we demonstrate reliable ΔBz,c measurements in-vivo in the human brain based on multi-echo spin echo (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. In a series of experiments, we optimize their robustness for in-vivo measurements while maintaining a good sensitivity to the current-induced fields. We validate both methods by assessing the linearity of the measured ΔBz,c with respect to the current strength. For the more efficient SSFP-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings of ΔBz,c fields as weak as 1 nT, caused by currents of 1 mA strength. Comparison of the ΔBz,c measurements with simulated ΔBz,c images based on FEM calculations and individualized head models reveals significant linear correlations in all subjects, but only for the stray field-corrected data. As final step, we reconstruct current density distributions from the measured and simulated ΔBz,c data. Reconstructions from non-corrected ΔBz,c measurements systematically overestimate the current densities. Comparing the current densities reconstructed from corrected ΔBz,c measurements and from simulated ΔBz,c images reveals an average coefficient of determination R2 of 71%. In addition, it shows that the simulations underestimated the current strength on average by 24%.Our results open up the possibility of using MRI to systematically validate and optimize numerical field simulations that play an important role in several neuroscience applications, such as transcranial brain stimulation, and electro- and magnetoencephalography.

Journal

NeuroimageElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial