How much habitat is enough?

How much habitat is enough? If conservation efforts are to be successful, it is critical that we understand the relationship between habitat loss and the probability of population extinction. Available evidence suggests a threshold amount of habitat loss at which the probability of population extinction increases from near-zero to near-one following a small additional loss of habitat. The main factors thought to determine this extinction threshold are reproductive rate of the organism, rate of emigration of the organism from habitat, habitat pattern in the landscape (fragmentation), and matrix quality (survival rate of the organism in non-habitat areas). Effective conservation measures require knowledge not only of what factors determine the threshold, but also the relative magnitudes of their effects. Therefore, the purpose of this study was to determine the relative effects of these four factors on the extinction threshold, using a spatially-explicit simulation model. Reproductive rate had the largest potential effect on the extinction threshold. The rate of emigration from habitat also had a very strong predicted effect on the extinction threshold; the higher the rate of emigration, the more habitat was needed for persistence. Matrix quality had a moderate effect, and habitat pattern had a very small predicted effect. The simulations predicted that under certain circumstances up to 58% less habitat is required for population persistence, if a matrix of very low quality is converted to a matrix of very high quality. Matrix quality can be improved by maintaining heterogeneous landscapes with a diversity of vegetated features, and by reducing factors causing direct mortality of dispersers such as road traffic and pesticides. In summary, the simulations suggest that (i) the first priority for conservation should be habitat preservation and restoration, (ii) information on movement rates of organisms is critical for predicting extinction thresholds and (iii) conservation strategies should consider the quality of the whole landscape, including the matrix. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Conservation Elsevier

How much habitat is enough?

Biological Conservation, Volume 100 (1) – Jul 1, 2001

Loading next page...
 
/lp/elsevier/how-much-habitat-is-enough-37ZBgtpd0z
Publisher
Elsevier
Copyright
Copyright © 2001 Elsevier Science Ltd
ISSN
0006-3207
D.O.I.
10.1016/S0006-3207(00)00208-1
Publisher site
See Article on Publisher Site

Abstract

If conservation efforts are to be successful, it is critical that we understand the relationship between habitat loss and the probability of population extinction. Available evidence suggests a threshold amount of habitat loss at which the probability of population extinction increases from near-zero to near-one following a small additional loss of habitat. The main factors thought to determine this extinction threshold are reproductive rate of the organism, rate of emigration of the organism from habitat, habitat pattern in the landscape (fragmentation), and matrix quality (survival rate of the organism in non-habitat areas). Effective conservation measures require knowledge not only of what factors determine the threshold, but also the relative magnitudes of their effects. Therefore, the purpose of this study was to determine the relative effects of these four factors on the extinction threshold, using a spatially-explicit simulation model. Reproductive rate had the largest potential effect on the extinction threshold. The rate of emigration from habitat also had a very strong predicted effect on the extinction threshold; the higher the rate of emigration, the more habitat was needed for persistence. Matrix quality had a moderate effect, and habitat pattern had a very small predicted effect. The simulations predicted that under certain circumstances up to 58% less habitat is required for population persistence, if a matrix of very low quality is converted to a matrix of very high quality. Matrix quality can be improved by maintaining heterogeneous landscapes with a diversity of vegetated features, and by reducing factors causing direct mortality of dispersers such as road traffic and pesticides. In summary, the simulations suggest that (i) the first priority for conservation should be habitat preservation and restoration, (ii) information on movement rates of organisms is critical for predicting extinction thresholds and (iii) conservation strategies should consider the quality of the whole landscape, including the matrix.

Journal

Biological ConservationElsevier

Published: Jul 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off