Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history

Holocene vegetation variation in the Daihai Lake region of north-central China: a direct... DH99a sediment core recovered at the center of Daihai Lake in north-central China was analyzed at 4-cm intervals for pollen assemblage and concentration. The pollen record spanning the last ca 10,000 yr revealed a detailed history of vegetation and climate changes over the Daihai Lake region during the Holocene. From ca 10,250 to 7900 cal yr BP, arid herbs and shrubs dominated the lake basin in company with patches of mixed pine and broadleaved forests, indicating a mild and dry climatic condition. Over this period, the woody plants displayed an increasing trend, which may suggest a gradual increase in warmth and humidity. The period between ca 7900 and 4450 cal yr BP exhibits large-scale covers of mixed coniferous and broadleaved forests, marking a warm and humid climate. Changes in the composition of the forests indicate that both temperature and precipitation displayed obvious fluctuations during this period, i.e., cool and humid ca 7900– 7250 cal yr BP, warm and slightly humid ca 7250– 6050 cal yr BP, warm and humid between ca 6050 and 5100 cal yr BP, mild and slightly humid ca 5100– 4800 cal yr BP, and mild and humid ca 4800– 4450 cal yr BP. The period can be viewed as the Holocene optimum (characterized by a warm and moist climate) of north-central China, with the maximum (dominated both by warmest temperatures and by richest precipitations) occurring from ca 6050 to 5100 cal yr BP. During the period of ca 4450– 2900 cal yr BP, the woody plants declined, and the climate generally became cooler and drier than the preceding period. This period is characterized by a cold, dry episode from ca 4450 to 3950 cal yr BP, a warm, slightly humid interval between ca 3950 and 3500 cal yr BP and a mild, slightly dry episode from ca 3500 to 2900 cal yr BP, and appears to be a transition from warm and humid to cold and dry climatic conditions. Since ca 2900 cal yr ago, the forests disappeared and the vegetation density decreased, reflecting a cool and dry climate. However, a relative recovery of the woody plants occurring between ca 1700 and 1350 cal yr BP may denote an increase both in temperature and in precipitation. Fluctuations in the climatic condition of the Daihai Lake region were not only related to changes in the seasonal distribution of solar insolation and in the axis and intensity of the ocean current in the western North Pacific but were also closely linked to variations in the position and strength of polar high-pressure systems and in the pattern and intensity of the Westerly winds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quaternary Science Reviews Elsevier

Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history

Loading next page...
 
/lp/elsevier/holocene-vegetation-variation-in-the-daihai-lake-region-of-north-cviyIEShDo
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
0277-3791
eISSN
1873-457X
DOI
10.1016/j.quascirev.2004.01.005
Publisher site
See Article on Publisher Site

Abstract

DH99a sediment core recovered at the center of Daihai Lake in north-central China was analyzed at 4-cm intervals for pollen assemblage and concentration. The pollen record spanning the last ca 10,000 yr revealed a detailed history of vegetation and climate changes over the Daihai Lake region during the Holocene. From ca 10,250 to 7900 cal yr BP, arid herbs and shrubs dominated the lake basin in company with patches of mixed pine and broadleaved forests, indicating a mild and dry climatic condition. Over this period, the woody plants displayed an increasing trend, which may suggest a gradual increase in warmth and humidity. The period between ca 7900 and 4450 cal yr BP exhibits large-scale covers of mixed coniferous and broadleaved forests, marking a warm and humid climate. Changes in the composition of the forests indicate that both temperature and precipitation displayed obvious fluctuations during this period, i.e., cool and humid ca 7900– 7250 cal yr BP, warm and slightly humid ca 7250– 6050 cal yr BP, warm and humid between ca 6050 and 5100 cal yr BP, mild and slightly humid ca 5100– 4800 cal yr BP, and mild and humid ca 4800– 4450 cal yr BP. The period can be viewed as the Holocene optimum (characterized by a warm and moist climate) of north-central China, with the maximum (dominated both by warmest temperatures and by richest precipitations) occurring from ca 6050 to 5100 cal yr BP. During the period of ca 4450– 2900 cal yr BP, the woody plants declined, and the climate generally became cooler and drier than the preceding period. This period is characterized by a cold, dry episode from ca 4450 to 3950 cal yr BP, a warm, slightly humid interval between ca 3950 and 3500 cal yr BP and a mild, slightly dry episode from ca 3500 to 2900 cal yr BP, and appears to be a transition from warm and humid to cold and dry climatic conditions. Since ca 2900 cal yr ago, the forests disappeared and the vegetation density decreased, reflecting a cool and dry climate. However, a relative recovery of the woody plants occurring between ca 1700 and 1350 cal yr BP may denote an increase both in temperature and in precipitation. Fluctuations in the climatic condition of the Daihai Lake region were not only related to changes in the seasonal distribution of solar insolation and in the axis and intensity of the ocean current in the western North Pacific but were also closely linked to variations in the position and strength of polar high-pressure systems and in the pattern and intensity of the Westerly winds.

Journal

Quaternary Science ReviewsElsevier

Published: Jul 1, 2004

References

  • Asynchronous Holocene optimum of the East Asian monsoon
    An, Z.S; Porter, S.C; Kutzbach, J.E; Wu, X.H; Wang, S.M; Liu, X.D; Li, X.Q; Zhou, W.J
  • Cold event
    Fang, X.Q; Sun, N
  • Holocene climate changes over the desert/loess transition of north-central China
    Xiao, J.L; Nakamura, T; Lu, H.Y; Zhang, G.Y

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off