Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious?

Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease:... There is increasing evidence that the serotonergic system is highly dysfunctional in Alzheimer's disease (AD), and this could be related to cognitive impairments associated with dementia. Of the various serotonin receptors, 5-HT1A receptors are relevant to AD as they are highly expressed in the human hippocampus and are known to be involved in the regulation of memory processes. This review will discuss the involvement of 5-HT1A receptors in AD at several levels (post-mortem, in-vivo imaging, animal models). The involvement of this receptor subtype in AD pathophysiology will be reviewed particularly in terms of the modulation of its expression in the hippocampal region. Hypotheses involving 5-HT1A receptors will be developed, from two points of view: 5-HT1A receptors expression regulation as being beneficial and needing to be pharmacologically stimulated; and 5-HT1A receptors expression modulation as deleterious and needing to be limited. Finally, we will propose perspectives for future experiments that should weigh in favor of one or the other of the two hypotheses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious?

Loading next page...
 
/lp/elsevier/hippocampal-5-ht1a-receptor-expression-changes-in-prodromal-stages-of-mMqdsLhf4x
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2017.06.021
Publisher site
See Article on Publisher Site

Abstract

There is increasing evidence that the serotonergic system is highly dysfunctional in Alzheimer's disease (AD), and this could be related to cognitive impairments associated with dementia. Of the various serotonin receptors, 5-HT1A receptors are relevant to AD as they are highly expressed in the human hippocampus and are known to be involved in the regulation of memory processes. This review will discuss the involvement of 5-HT1A receptors in AD at several levels (post-mortem, in-vivo imaging, animal models). The involvement of this receptor subtype in AD pathophysiology will be reviewed particularly in terms of the modulation of its expression in the hippocampal region. Hypotheses involving 5-HT1A receptors will be developed, from two points of view: 5-HT1A receptors expression regulation as being beneficial and needing to be pharmacologically stimulated; and 5-HT1A receptors expression modulation as deleterious and needing to be limited. Finally, we will propose perspectives for future experiments that should weigh in favor of one or the other of the two hypotheses.

Journal

NeuropharmacologyElsevier

Published: Sep 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off