Hillslope dynamics modeled with increasing complexity

Hillslope dynamics modeled with increasing complexity Few studies have investigated how much model complexity is needed to simulate both the hillslope outflow and the internal hillslope dynamics. We studied the influence of model complexity on simulations for the Panola Mountain trenched hillslope. We analyzed the influences of the inclusion of bedrock permeability, variable soil depth and preferential flow on modeled hillslope responses. We found that without the inclusion of bedrock leakage the long-term subsurface flow response measured at the trenchface and the threshold relation between total precipitation and total subsurface flow could not be simulated adequately. Individual events could still be represented acceptably, showing the importance of long time series for model calibration and validation. The use of spatially constant bedrock conductivity allowed us to simulate spatially variable bedrock leakage rates because of the spatially variable depths of saturation. Without variable soil depth the spatial variability of subsurface flow along the trenchface and its temporal dynamics during events could not be represented. In addition the spatial patterns of saturation at the soil-bedrock interface did not agree with the observed patterns and responses to smaller events were underestimated. Inclusion of preferential flow mainly influenced the distribution of the maximum saturation depths at the soil-bedrock interface and increased peak flows and recessions. Soil moisture measurements were less useful for model validation for the Panola hillslope than measurements of the spatial patterns of saturation and subsurface flow. We plea for a new blue print for the set-up of hillslope experiments such that their data is useful for studies on hillslope model complexity and for model validation and rejection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

Hillslope dynamics modeled with increasing complexity

Loading next page...
 
/lp/elsevier/hillslope-dynamics-modeled-with-increasing-complexity-xfQht1ELJH
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier B.V.
ISSN
0022-1694
eISSN
1879-2707
D.O.I.
10.1016/j.jhydrol.2008.07.019
Publisher site
See Article on Publisher Site

Abstract

Few studies have investigated how much model complexity is needed to simulate both the hillslope outflow and the internal hillslope dynamics. We studied the influence of model complexity on simulations for the Panola Mountain trenched hillslope. We analyzed the influences of the inclusion of bedrock permeability, variable soil depth and preferential flow on modeled hillslope responses. We found that without the inclusion of bedrock leakage the long-term subsurface flow response measured at the trenchface and the threshold relation between total precipitation and total subsurface flow could not be simulated adequately. Individual events could still be represented acceptably, showing the importance of long time series for model calibration and validation. The use of spatially constant bedrock conductivity allowed us to simulate spatially variable bedrock leakage rates because of the spatially variable depths of saturation. Without variable soil depth the spatial variability of subsurface flow along the trenchface and its temporal dynamics during events could not be represented. In addition the spatial patterns of saturation at the soil-bedrock interface did not agree with the observed patterns and responses to smaller events were underestimated. Inclusion of preferential flow mainly influenced the distribution of the maximum saturation depths at the soil-bedrock interface and increased peak flows and recessions. Soil moisture measurements were less useful for model validation for the Panola hillslope than measurements of the spatial patterns of saturation and subsurface flow. We plea for a new blue print for the set-up of hillslope experiments such that their data is useful for studies on hillslope model complexity and for model validation and rejection.

Journal

Journal of HydrologyElsevier

Published: Oct 30, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off