Highly efficient electrochemical determination of propylthiouracil in urine samples after selective electromembrane extraction by copper nanoparticles-decorated hollow fibers

Highly efficient electrochemical determination of propylthiouracil in urine samples after... In this work, a novel, inexpensive and fast strategy was described for selective and effective extraction and determination of propylthiouracil (PTU) with a high polarity (log P = 1.2) based on electromembrane extraction (EME) followed by differential pulse voltammetry (DPV). For this purpose, copper nanoparticles (CuNPs)-decorated hollow fiber was used as the selective membrane for EME of PTU in urine samples. The influential parameters on extraction such as extraction solvent, pH, agitation speed, applied potential and extraction time were systematically investigated. In optimized conditions, acceptable linearity was attained between 0.05 and 5 µg mL−1 (R2 value = 0.9994); moreover, superb enrichment factor (200) and repeatability (RSD%, n = 4, 5.7%) for 0.1 µg mL−1 of PTU solution were in desirable range. In addition, extraction recovery of 80.0% was achieved in this condition and the limit of detection (S/N ratio of 3:1) was 0.02 µg mL−1. Finally, the proposed method was successfully applied to determine PTU concentration in urine samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosensors and Bioelectronics Elsevier

Highly efficient electrochemical determination of propylthiouracil in urine samples after selective electromembrane extraction by copper nanoparticles-decorated hollow fibers

Loading next page...
 
/lp/elsevier/highly-efficient-electrochemical-determination-of-propylthiouracil-in-31pc0R3H0s
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0956-5663
D.O.I.
10.1016/j.bios.2018.05.014
Publisher site
See Article on Publisher Site

Abstract

In this work, a novel, inexpensive and fast strategy was described for selective and effective extraction and determination of propylthiouracil (PTU) with a high polarity (log P = 1.2) based on electromembrane extraction (EME) followed by differential pulse voltammetry (DPV). For this purpose, copper nanoparticles (CuNPs)-decorated hollow fiber was used as the selective membrane for EME of PTU in urine samples. The influential parameters on extraction such as extraction solvent, pH, agitation speed, applied potential and extraction time were systematically investigated. In optimized conditions, acceptable linearity was attained between 0.05 and 5 µg mL−1 (R2 value = 0.9994); moreover, superb enrichment factor (200) and repeatability (RSD%, n = 4, 5.7%) for 0.1 µg mL−1 of PTU solution were in desirable range. In addition, extraction recovery of 80.0% was achieved in this condition and the limit of detection (S/N ratio of 3:1) was 0.02 µg mL−1. Finally, the proposed method was successfully applied to determine PTU concentration in urine samples.

Journal

Biosensors and BioelectronicsElsevier

Published: Aug 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off