High-throughput surface preparation for flexible slot die coated perovskite solar cells

High-throughput surface preparation for flexible slot die coated perovskite solar cells To achieve industrially viable fabrication process for perovskite-based solar cells, every process step must be optimized for maximum throughput. We present a study of substituting laboratory-type UV-Ozone surface treatment with a high-throughput Corona treatment in a scalable perovskite solar cell fabrication process. It is observed that water contact angle measurements provide insufficient information to determine the necessary dose of Corona or UV-Ozone treatment, but the surface carbon signal measured by x-ray photoelectron spectroscopy accurately identifies when surface contamination has been completely removed. Furthermore, we observe highly accelerated de-contamination of ZnO surfaces by UV-Ozone treatment. The effect can be explained by photocatalytic O2− ion generation indicating that UV-Ozone treatment is also applicable in high-throughput processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

High-throughput surface preparation for flexible slot die coated perovskite solar cells

Loading next page...
 
/lp/elsevier/high-throughput-surface-preparation-for-flexible-slot-die-coated-Tyoc5eoi6f
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.027
Publisher site
See Article on Publisher Site

Abstract

To achieve industrially viable fabrication process for perovskite-based solar cells, every process step must be optimized for maximum throughput. We present a study of substituting laboratory-type UV-Ozone surface treatment with a high-throughput Corona treatment in a scalable perovskite solar cell fabrication process. It is observed that water contact angle measurements provide insufficient information to determine the necessary dose of Corona or UV-Ozone treatment, but the surface carbon signal measured by x-ray photoelectron spectroscopy accurately identifies when surface contamination has been completely removed. Furthermore, we observe highly accelerated de-contamination of ZnO surfaces by UV-Ozone treatment. The effect can be explained by photocatalytic O2− ion generation indicating that UV-Ozone treatment is also applicable in high-throughput processing.

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off