High definition transcranial pink noise stimulation of anterior cingulate cortex on food craving: An explorative study

High definition transcranial pink noise stimulation of anterior cingulate cortex on food craving:... Dysfunctional neural activity in the cortical reward system network has been implicated in food addiction. This is the first study exploring the potential therapeutic effects of high definition transcranial pink noise stimulation (HD-tPNS) targeted at the anterior cingulate cortex (ACC) on craving and brain activity in women with obesity who showed features of food addiction (Yale Food Addiction Scale score of ≥3). Sixteen eligible females participated in a randomized, double-blind, parallel group study. Participants received six 20-minute sessions of either 1 mA (n = 8) or sham (n = 8) stimulation with HD-tPNS over two weeks. Anode was placed above the ACC (Fz) with 4 cathodes (F7, T3, F8, and T4). Food craving was assessed using the Food Cravings Questionnaire State (FCQ-S) and brain activity was measured using electroencephalogram (EEG). Assessments were at baseline, and two days, four weeks, and six weeks after stimulation. A 22% decrease (mean decrease of −1.11, 95% CI -2.09, −0.14) was observed on the 5-point ‘intense desire to eat’ subscale two days after stimulation in the HD-tPNS group compared to sham. Furthermore, whole brain analysis showed a significant decrease in beta 1 activity in the ACC in the stimulation group compared to sham (threshold 0.38, p = 0.04). These preliminary findings suggest HD-tPNS of the ACC transiently inhibits the desire to eat and, thus, warrants further examination as a potential tool in combating food craving. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Appetite Elsevier

High definition transcranial pink noise stimulation of anterior cingulate cortex on food craving: An explorative study

Loading next page...
 
/lp/elsevier/high-definition-transcranial-pink-noise-stimulation-of-anterior-eaNTC98KQ9
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0195-6663
D.O.I.
10.1016/j.appet.2017.10.034
Publisher site
See Article on Publisher Site

Abstract

Dysfunctional neural activity in the cortical reward system network has been implicated in food addiction. This is the first study exploring the potential therapeutic effects of high definition transcranial pink noise stimulation (HD-tPNS) targeted at the anterior cingulate cortex (ACC) on craving and brain activity in women with obesity who showed features of food addiction (Yale Food Addiction Scale score of ≥3). Sixteen eligible females participated in a randomized, double-blind, parallel group study. Participants received six 20-minute sessions of either 1 mA (n = 8) or sham (n = 8) stimulation with HD-tPNS over two weeks. Anode was placed above the ACC (Fz) with 4 cathodes (F7, T3, F8, and T4). Food craving was assessed using the Food Cravings Questionnaire State (FCQ-S) and brain activity was measured using electroencephalogram (EEG). Assessments were at baseline, and two days, four weeks, and six weeks after stimulation. A 22% decrease (mean decrease of −1.11, 95% CI -2.09, −0.14) was observed on the 5-point ‘intense desire to eat’ subscale two days after stimulation in the HD-tPNS group compared to sham. Furthermore, whole brain analysis showed a significant decrease in beta 1 activity in the ACC in the stimulation group compared to sham (threshold 0.38, p = 0.04). These preliminary findings suggest HD-tPNS of the ACC transiently inhibits the desire to eat and, thus, warrants further examination as a potential tool in combating food craving.

Journal

AppetiteElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off