Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine

Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine In this study, on the basis of hierarchical CuInS2-based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS2/NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O2-dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O2-sensitive photocathode and the SOx-catalytic event toward O2 reduction. Based on the sarcosine-controlled O2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS2-based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS2-based heterostructured photocathodic enzymatic sensing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosensors and Bioelectronics Elsevier

Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine

Loading next page...
 
/lp/elsevier/hierarchical-cuins2-based-heterostructure-application-for-qAjU9Mpr9D
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0956-5663
D.O.I.
10.1016/j.bios.2018.02.039
Publisher site
See Article on Publisher Site

Abstract

In this study, on the basis of hierarchical CuInS2-based heterostructure, a novel cathodic photoelectrochemical (PEC) enzymatic bioanalysis of the sarcosine detection was reported. Specifically, heterostructured CuInS2/NiO/ITO photocathode was prepared and sarcosine oxidases (SOx) were integrated for the construction of the enzymatic biosensor. In the bioanalysis, the O2-dependent suppression of the cathodic photocurrent can be observed due to the competition between the as-fabricated O2-sensitive photocathode and the SOx-catalytic event toward O2 reduction. Based on the sarcosine-controlled O2 concentration, a novel photocathodic enzymatic biosensor could be realized for the sensitive and specific sarcosine detection. This work manifested the great potential of CuInS2-based heterostructure as a novel platform for future PEC bioanalytical development and also a PEC method for sarcosine detection, which could be easily extended to numerous other enzymatic systems and to our knowledge has not been reported. This work is expected to stimulate more interest in the design and implementation of numerous CuInS2-based heterostructured photocathodic enzymatic sensing.

Journal

Biosensors and BioelectronicsElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off