Heterogeneous atmospheric degradation of pesticides by ozone: Influence of relative humidity and particle type

Heterogeneous atmospheric degradation of pesticides by ozone: Influence of relative humidity and... In the atmosphere pesticides can be adsorbed on the surface of particles, depending on their physico-chemical properties. They can react with atmospheric oxidants such as ozone but parameters influencing the degradation kinetics are not clear enough. In this study the heterogeneous ozonolysis of eight commonly used pesticides (i.e., difenoconazole, tetraconazole, cyprodinil, fipronil, oxadiazon, pendimethalin, deltamethrin, and permethrin) adsorbed on hydrophobic and hydrophilic silicas, and Arizona dust at relative humidity ranging from 0% to 80% was investigated. Under experimental conditions, only cyprodinil, deltamethrin, permethrin and pendimethalin were degraded by ozone. Second-order kinetic constants calculated for the pesticides degraded by ozone ranged from (4.7 ± 0.4) × 10−20 cm3 molecule−1 s−1 (pendimethalin, hydrophobic silica, 55% RH) to (2.3 ± 0.4) × 10−17 cm3 molecule−1 s−1 (cyprodinil, Arizona dust, 0% RH). Results obtained can contribute to a better understanding of the atmospheric fate of pesticides in the particulate phase and show the importance of taking humidity and particle type into account for the determination of pesticides atmospheric half-lives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Heterogeneous atmospheric degradation of pesticides by ozone: Influence of relative humidity and particle type

Loading next page...
 
/lp/elsevier/heterogeneous-atmospheric-degradation-of-pesticides-by-ozone-influence-zY92vtjMll
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.049
Publisher site
See Article on Publisher Site

Abstract

In the atmosphere pesticides can be adsorbed on the surface of particles, depending on their physico-chemical properties. They can react with atmospheric oxidants such as ozone but parameters influencing the degradation kinetics are not clear enough. In this study the heterogeneous ozonolysis of eight commonly used pesticides (i.e., difenoconazole, tetraconazole, cyprodinil, fipronil, oxadiazon, pendimethalin, deltamethrin, and permethrin) adsorbed on hydrophobic and hydrophilic silicas, and Arizona dust at relative humidity ranging from 0% to 80% was investigated. Under experimental conditions, only cyprodinil, deltamethrin, permethrin and pendimethalin were degraded by ozone. Second-order kinetic constants calculated for the pesticides degraded by ozone ranged from (4.7 ± 0.4) × 10−20 cm3 molecule−1 s−1 (pendimethalin, hydrophobic silica, 55% RH) to (2.3 ± 0.4) × 10−17 cm3 molecule−1 s−1 (cyprodinil, Arizona dust, 0% RH). Results obtained can contribute to a better understanding of the atmospheric fate of pesticides in the particulate phase and show the importance of taking humidity and particle type into account for the determination of pesticides atmospheric half-lives.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off