Hensen's Node from Vitamin A-Deficient Quail Embryo Induces Chick Limb Bud Duplication and Retains Its Normal Asymmetric Expression of Sonic hedgehog ( Shh )

Hensen's Node from Vitamin A-Deficient Quail Embryo Induces Chick Limb Bud Duplication and... Both Hensen's node, the organizer center in chick embryo, and exogenous retinoic acid are known to induce limb duplication when grafted or applied to the host chick limb bud. Retinoic acid is known to be present in the node and has been proposed as the putative morphogen for chick limb development. Here, we report that Hensen's node from vitamin A-deficient quail embryo induces limb duplication in the host chick embryo similar to that induced by the node from vitamin A-sufficient control embryos. We also demonstrate that the expression of Sonic hedgehog ( Shh ), recently shown to be the mediator of polarizing activity in the chick limb bud, is not affected by the endogenous vitamin A status of the embryo. Furthermore, whole-mount in situ hybridization revealed asymmetry of Shh expression in the Hensen's node of both vitamin A-sufficient and -deficient quail embryos. Retinoids were not detectable in the eggs from which vitamin A-deficient embryos were obtained. Extracts from normal embryos induced a level of expression of reporter gene equivalent to the presence of 3.4 pg of active retinoids per embryo, while those from vitamin A-deficient embryos induced a baseline level of reporter gene expression similar to that of the controls. Our studies suggest that endogenous retinoic acid is not involved in Shh expression nor in regulating its asymmetry during normal early avian embryogenesis and support the current view that endogenous retinoic acid may not be a direct morphogen for limb bud duplication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Developmental Biology Elsevier

Hensen's Node from Vitamin A-Deficient Quail Embryo Induces Chick Limb Bud Duplication and Retains Its Normal Asymmetric Expression of Sonic hedgehog ( Shh )

Loading next page...
 
/lp/elsevier/hensen-s-node-from-vitamin-a-deficient-quail-embryo-induces-chick-limb-z8GBRLaSyO
Publisher
Elsevier
Copyright
Copyright © 1996 Academic Press
ISSN
0012-1606
eISSN
1095-564X
D.O.I.
10.1006/dbio.1996.0021
Publisher site
See Article on Publisher Site

Abstract

Both Hensen's node, the organizer center in chick embryo, and exogenous retinoic acid are known to induce limb duplication when grafted or applied to the host chick limb bud. Retinoic acid is known to be present in the node and has been proposed as the putative morphogen for chick limb development. Here, we report that Hensen's node from vitamin A-deficient quail embryo induces limb duplication in the host chick embryo similar to that induced by the node from vitamin A-sufficient control embryos. We also demonstrate that the expression of Sonic hedgehog ( Shh ), recently shown to be the mediator of polarizing activity in the chick limb bud, is not affected by the endogenous vitamin A status of the embryo. Furthermore, whole-mount in situ hybridization revealed asymmetry of Shh expression in the Hensen's node of both vitamin A-sufficient and -deficient quail embryos. Retinoids were not detectable in the eggs from which vitamin A-deficient embryos were obtained. Extracts from normal embryos induced a level of expression of reporter gene equivalent to the presence of 3.4 pg of active retinoids per embryo, while those from vitamin A-deficient embryos induced a baseline level of reporter gene expression similar to that of the controls. Our studies suggest that endogenous retinoic acid is not involved in Shh expression nor in regulating its asymmetry during normal early avian embryogenesis and support the current view that endogenous retinoic acid may not be a direct morphogen for limb bud duplication.

Journal

Developmental BiologyElsevier

Published: Jan 10, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off